

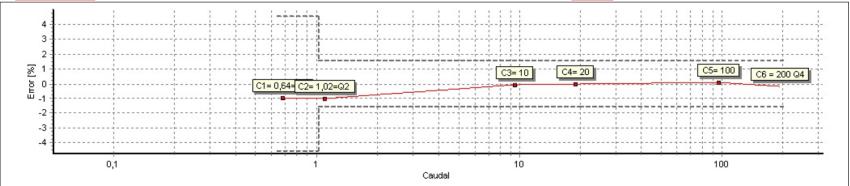
// Sumario

Sistemas de comunicación

Caso de éxito

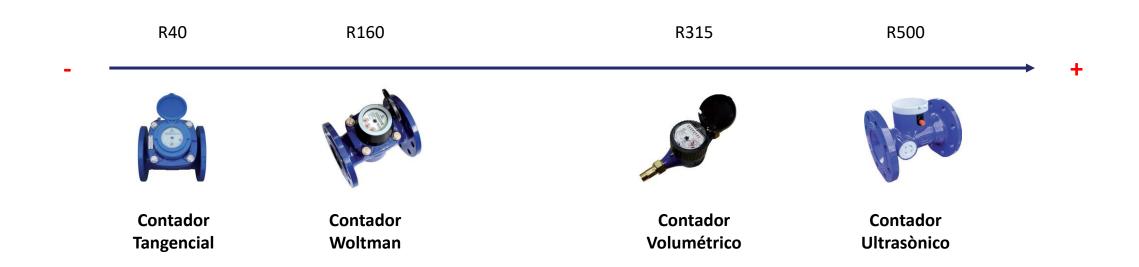
// Caudales de trabajo (Q_x) según OIML R49-1:2013

- Caudal mínimo (Q₁) o caudal de arranque: caudal de agua más pequeño con el que el contador de agua suministra indicaciones que satisfacen los requisitos en materia de error máximo permitido.
- Caudal de transición (Q₂): valor del caudal de agua que se sitúa entre el caudal de agua mínimo y el permanente y en el que el intervalo de caudal de agua se divide en dos zonas, la "zona superior" y la "zona inferior". A cada zona le corresponde un error máximo permitido característico (1,6x Q₁).
- Caudal permanente (Q₃): caudal más elevado con el que puede funcionar el contador de agua de forma satisfactoria en condiciones de uso normal, es decir, bajo condiciones de flujo estacionario o intermitente. Sirve para designar al contador.
- Caudal de sobrecarga (Q_4): máximo caudal con el que puede funcionar el contador de forma satisfactoria durante un corto periodo de tiempo sin sufrir deterioro. (1,25 x Q_3).


// Presión de trabajo

Para contadores las más habituales son PN10 i PN16

// Caudales de trabajo $(Q_x) \rightarrow$ Ejemplo errores máximos permitidos



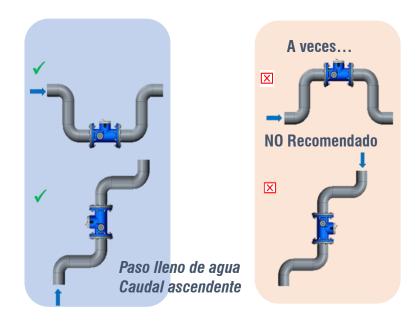
Method of measurement: volumetric, flying start / stop method, pulse synchronisation														
Nr	Proof name	Flowrate L / h	t _м °C	P _M bar	dP bar	EMF	E _{EMF}	Duration sec	Impulse	Synchron. Impulse	EMF k _v 1 / L	V _c L	V _I L	Error %
	C6 = 200 Q4	193.869,0	19,31	1,50	0,21	P1	-0,50	93,5060	20149	57378	11,4286	5.045,72	5.037,25	-0,17
	C5= 100	96.036,6	19,31	0,84	0,05	P1	-0,53	113,6140	12142	34485	11,4286	3.033,40	3.035,50	0,07
	C4= 20	18.802,7	19,36	1,55	0,00	P2	0,41	76,6120	1604	72494	180,0000	401,084	401,000	-0,02
	C3= 10	9.498,5	19,32	0,91	-0,01	P2	0,46	151,0090	1594	72127	180,0000	398,866	398,500	-0,09
	C2= 1,02=Q2	1.085,4	19,38	1,13	-0,01	P3	-1,23	268,8550	320	239451	3000,0000	80,8081	80,0000	-1,00
	C1= 0,64=Q1	675,1	19,41	0,60	0,00	P3	-1,15	107,9770	79	59142	3000,0000	19,9426	19,7500	-0,97

// Rango de trabajo (R)

- Ratio o relación entre el Caudal Permanente (Q3) y el Caudal Mínimo (Q1): Q3/Q1
- Por lo tanto, cuánto mayor es la R más sensible es un contador a caudales bajos
- Los valores estándar son: R40, R50, R63, R80, R100, R125, R160, R 200, R250, R315, R400, R500, R630, R800 y R1000

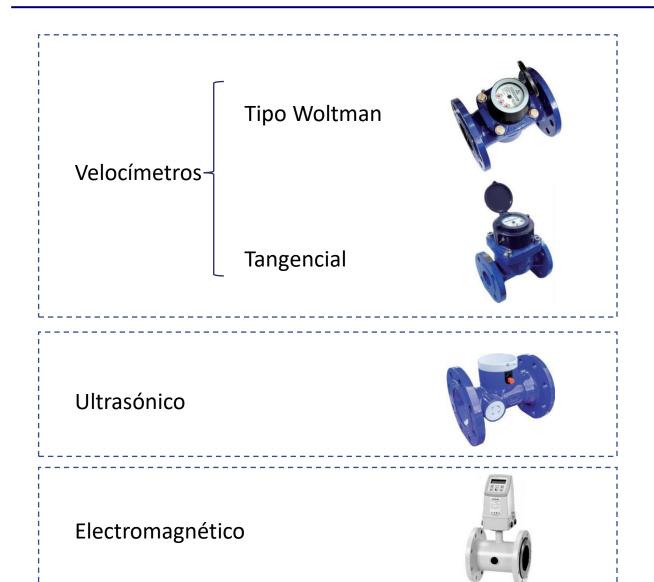
// Necesidad de tramos rectos (U_xD_x)

- Las X indica la distancia, medida en número de diámetros, aguas arriba (U) o abajo (D) a los que debe instalarse elementos mecánicos (válvulas, accesorios, etc.)
- Por ejemplo: un contador DN100 con características U10D5 indica que el elemento mecánico debe instalarse a 1000 mm de distancia aguas arriba del contador (10x100) y a 500 mm aguas abajo (5x100)


// Inclusión de esta información en la carátula:

// Instalación del contador

- El contador puede ser instalado en cualquier posición. En el caso de que la instalación no sea horizontal, se recomienda que el agua fluya hacia arriba siempre que sea posible.
- Se deben respetar los tramos rectos y libres de perturbaciones especificados por el fabricante.
- La tubería debe ser lavada antes de instalar el contador.
- El contador debe estar siempre lleno de agua.
- En ciertas instalaciones, puede ser recomendable la instalación de filtros cazapiedras antes del contador.



// MACROMEDIDORES

- Contadores > DN50
- Q3 > 40 m3/h
- R>20
- Materiales generalmente en fundición
- Modelos bridados

// MICROMEDIDORES

- Contadores de DN15 a DN50
- Q3 de 2,5 m3/h a 25m3/h
- R>80
- Materiales en plástico o latón
- Modelos roscados



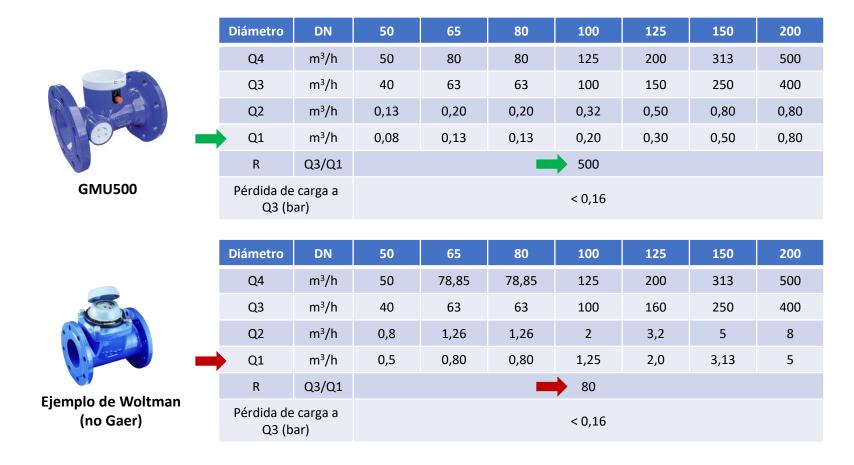
// Características generales:

- Contadores >DN50
- Q3 > 40 m3/h
- R>20
- Materiales generalmente en fundición
- Modelos bridados

- ✓ Precio Bajo
- Contiene piezas mecánicas: pérdida de carga, obstrucciones,...
- Con el tiempo pierde precisión
- Precisión baja a caudales pequeños
- Mantenimiento elevado
- Módulos de comunicación caros
- Cabezal generalmente mecánico
- No es capaz de detectar fugas o robatorios

Electromagnético

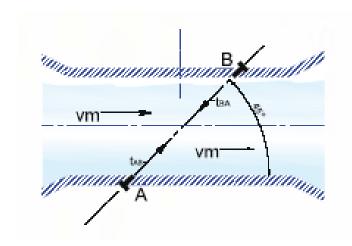
- Precio muy elevado para diámetros pequeños
- ✓ Conducto libre sin pérdidas de carga
- Elevada precision, más de la necesaria
- ✓ Bajo o nulo mantenimiento
- ✓ Módulo de comunicación incluidos
- ✓ Cabezal digital incluido
- Sensible a campos magnéticos
- ✓ Capaz de detectar fugas y robatorios

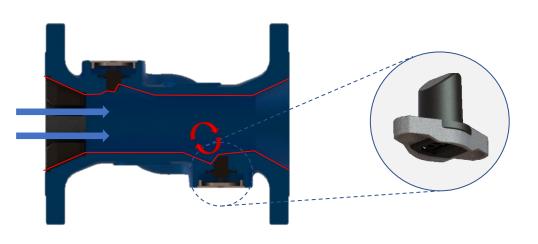


Ultrasónico

- Precio bajo, entre el mecánico y el electromagnético
- ✓ Conducto libre, sin perdidas de carga
- ✓ Elevada precisión
- ✓ Bajo o nulo mantenimiento
- ✓ Comunicación incluida
- ✓ Cabezal digital incluido
- ✓ No es sensible a campos magnéticos
- ✓ Capaz de detectar fugas y robatorios

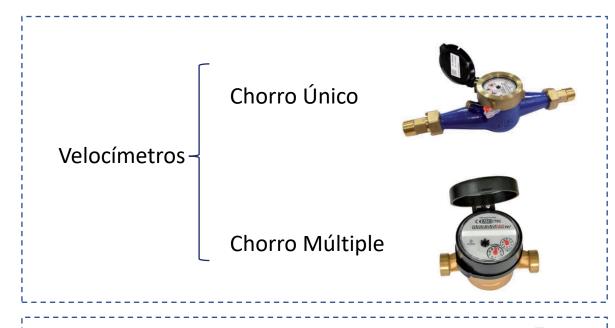
// Los contadores ultrasónicos (GMU500) presentan claras ventajas metrológicas en comparación a los tipo Woltman: menor caudal de arranque (Q1) y rango de caudales muy superior (R)


// Principio de funcionamiento


- Tecnología: ultrasónica
- Mide el tiempo que tarda la señal en cruzar la tubería: el tiempo será más rápido en el sentido del flujo i menos en contra
- Señal de doble sentido

Bajo o nulo mantenimiento:

- Los GMU500 no tienen partes móviles: no se desajustan ni se desgastan, por lo tanto su precisión es estable en el tiempo
- Equipo IP68
- Duración de la batería >10 años
- Paso libre, no presenta problemas con agua con ciertas impurezas
- Transductores diseñados especialmente para trabajar con aguas problemáticas, se han diseñado para evitar la deposición de sólidos

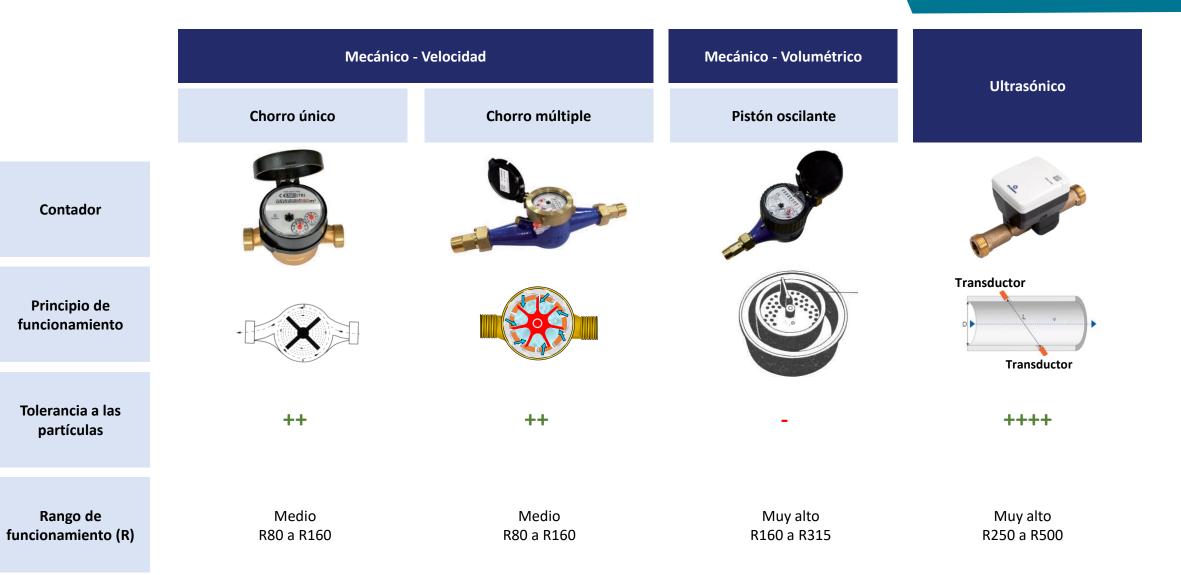


Hidrante <u>mecánico</u> <u>compacto</u>

Hidrante mecánico de dos componentes

Hidrante <u>ultrasónico de dos</u> <u>componentes</u>

Ultrasónico



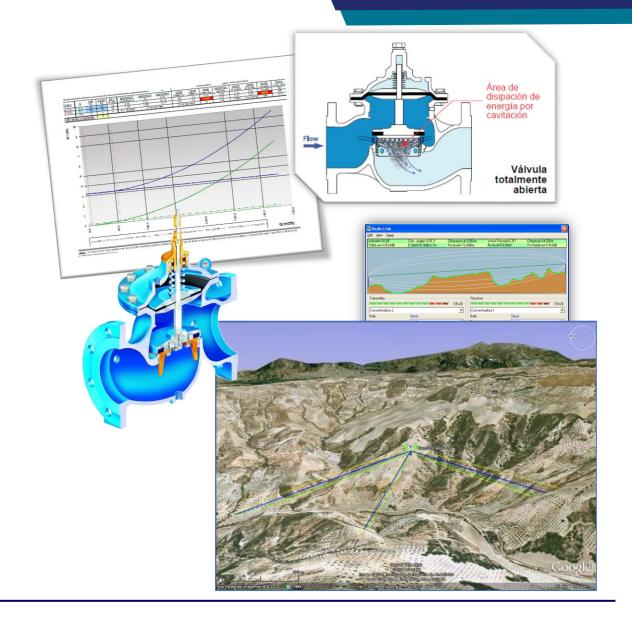
// Características generales:

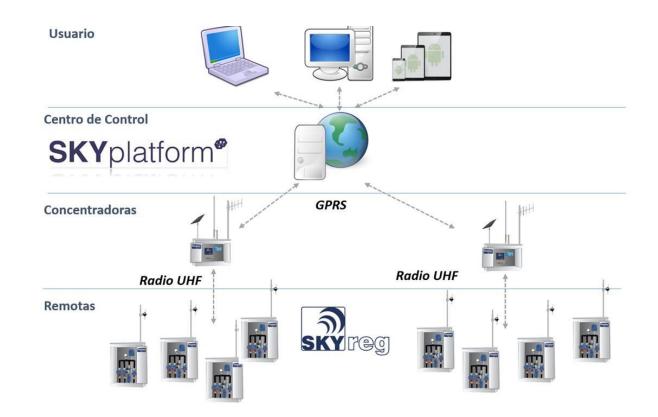
- Contadores de DN15 a DN50
- Q3 de 2,5 m3/h a 25m3/h
- R>80
- Materiales generalmente en plástico o latón
- Modelos roscados para una rápida instalación

	Salida de pulsos	56 46 36 26	sigfox	LoRa	NB- IOT
Tipo de tecnología	-	Propietaria	Propietaria (de pago)	Difusión y uso libre	Estándar, operada por los propios operarios de comunicaciones (Movistar, Orange, Vodafone)
Infraestructura	Cable	Privada, buena cobertura en general	Privada, a cargo de terceros. Cobertura alta en ciudades, limitada en zonas rurales	A cargo del usuario (económico)	A cargo de terceros. Cobertura muy buena en centros urbanos, limitada en rural
Coste	Cero	Medio	~5€/u. año. Pero poco ✓ volumen de información (ideal telemetría)	Cero, solo inversión en √ infraestructura	Medio (aceptable para sistemas bidireccionales y con requerimientos de ancho de banda)
Consumo	Nulo / Bajo	Muy alto 🔀	Muy bajo 🗸	Muy bajo 🗸	Medio-alto 🗶

Buena opción para lugares estratégicos con elevada cadencia y acceso a energía (Estaciones de bombeo)

Buena opción para gran cantidad de contadores (Hidrantes)




Cultivo	Olivo				
Antecedentes	Riego por impulsión directa de bombas				
Consumo anual	1.500.000 m3				
Extensión CR	1.200 hectáreas				
Tomas de riego	350 Hidrantes				
Filtrado	1 Estación Anillas				
Comuneros	300				
Sectores de riego	3				

- 1. Permitir la **gestión remota** de la instalación
- 2. Permitir **facturación** de acuerdo al **volumen consumido** de **agua**
- **3. Solucionar problemas** de **presión** debidos a la concentración de consumos

- Sistema de telegestión del riego SKYreg / SKYPlatform
- 120 Remotas SKYreg 10Salidas / 12Entradas
- Alimentación baterías 7.2V
- 350 contadores conectados
- 2 Unidades Concentradoras UHF / GPRS. Alim. Por paneles solares 100 W
- Telecomunicaciones radio UHF a 440 MHz y GRPS
- Centro de Control. Acceso Web y mediante Smartphone
- Sistema en tiempo real

Resultados

- Sistema de soporte para la toma de decisiones
- Mejor control de presiones y caudales: reducción de averías
- Mejor planificación y distribución de la dotación de agua asignada
- Implantación de facturación por consumo real
- Reducción de costes de gestión
- Mejor experiencia del usuario: visualización de los datos, transparencia, etc.

- Sistema de soporte para la toma de decisiones
- Mejor control de presiones y caudales: reducción de averías
- Mejor planificación y distribución de la dotación de agua asignada
- Implantación de facturación por consumo real
- Reducción de costes de gestión
- Mejor experiencia del usuario: visualización de los datos, transparencia, etc.

