

Problemas sensoriales del jamón curado

Jacint Arnau Arboix

IRTA - Programa de Tecnología Alimentaria Finca Camps i Armet, s/n. 17121 Monells (Girona) jacint.arnau@irta.cat ciarar@outlook.com

AL SERVICIO DEL SECTOR ALIMENTARIO

Nock

EWICGONDI

EXPERTOS EN MAQUINARIA PARA EL JAMÓN

DESCORTEZADORAS

Para productos Frescos y Curados

- ✓ Fácil uso.
- ✓ Ligera.
- ✓ Potente.
- ✓ Resistente.
- ✓ Eficaz.
- ✓ Mínima merma.

DESHUESADORAS

- ✓ Coxis.
- ✓ Gubiado.
- ✓ Codillo.
- ✓ Descortezado.
- ✓ Pulido.
- Fémur abierto.
- Paletas.

GUBIADORAS

Para un trabajo rápido y sin esfuerzo:

- ✓ Ligera.
- ✓ Potente.
- ✓ Muy fácil de manejar.

Uno de los objetivos de la elaboración del jamón curado es obtener un producto de alta calidad sensorial, siendo esta la característica más apreciada por parte de los consumidores de este producto.

Sin embargo, no siempre se alcanza la calidad deseada.

Las causas de los problemas sensoriales son diversas y hay que buscarlas en la materia prima, en los ingredientes y aditivos añadidos, en el proceso de elaboración y en las condiciones de comercialización.

Este documento recoge información científico-técnica publicada, la experiencia acumulada de generaciones de profesionales y la personal del autor adquirida durante cuatro décadas de estudio de las causas y soluciones de los problemas sensoriales del jamón curado.

Quiero expresar mi agradecimiento al IRTA y a su dirección por la confianza que en su momento depositaron en mí para abordar la I+D+i del jamón curado.

También quiero agradecer al INIA, Ministerio de Agricultura, Pesca y Alimentación, CDTI, Unión Europea, Anice, Fecic y a la Generalitat de Catalunya por la financiación de los proyectos de I+D+i relacionados con el jamón curado.

Finalmente, agradecer al equipo de profesionales del IRTA-Monells por el esfuerzo y dedicación en la mejora del conocimiento del jamón curado, a la Dra. Mª Dolors Guàrdia y al Dr. Xavier Serra por las sugerencias en la redacción del documento, y a mi familia por el estímulo y comprensión en la realización de este trabajo.

Esta obra pretende ser de ayuda en la formación de los profesionales del sector cárnico, en la propuesta de soluciones a los problemas sensoriales y en la mejora del conocimiento para todos aquellos que aprecien el jamón curado y deseen conocerlo en profundidad. Espero que sirva también para identificar retos de investigación y anime a los estudiantes universitarios, profesionales, investigadores y empresas a profundizar en ellos para mejorar este producto que, sin duda, es un símbolo gastronómico de España reconocido a nivel mundial.

En este artículo, se actualiza la información publicada en 2013 sobre problemas de aspecto, textura, olor y sabor/flavor que pueden encontrarse en el jamón curado (Arnau, 2013). Deseo que su lectura sea útil y contribuya a mejorar la calidad del jamón curado en sus distintas formas de consumo.

3

Sumario

Introducción 3	1.5.4. Coloraciones ocres
1. Aspecto 6	1.5.5. Crecimiento indeseado de mohos 2
1.1. Defectos de faenado 6	1.5.6. Remelo
1.2. Problemas de aspecto relacionados	1.5.7. Exudado limoso en el interior
con los vasos sanguíneos y articulaciones 7	del jamón 29
1.2.1. Hematomas 8	1.6. Ácaros
1.2.2. Vascularización 9	1.7. Coleópteros y dípteros2
1.2.3. Petequias y equimosis 9	1.7.1. Necrobia rufipes
1.2.4. Vasos hinchados 9	1.7.2. Saltón (Piophila casei)
1.2.5. Manchas verdes-ocres-marrones 11	1.8. Problemas de aspecto
1.2.6. Manchas de sangre en la superficie	de origen fisicoquímico 29
de corte	1.8.1. Halos de color 29
1.2.7. Líquido sinovial	1.8.2. Coloraciones verdosas/ocres
1.2.8. Piel o grasa de aspecto rojizo 13	en el magro 33
1.3. Quemaduras superficiales	1.8.3. Irisaciones
1.3.1. Quemadura de nitrito	1.8.4. Brillo del corte 3-
1.3.2. Quemadura de congelación	1.8.5. Color insuficientemente desarrollado
1.3.3. Quemadura de la sal 14	en jamones sin nitrificantes 3
1.4. Oxidación	1.9. Precipitados 3
1.4.1. Oxidación excesiva de la grasa superficial 15	1.9.1. Pintas blancas y velo blanco de
1.4.2. Oxidación del magro superficial 15	tirosina 3
1.4.3. Agrisado codillo	1.9.2. Precipitados de fosfato
1.4.4. Oxidación del interior del producto 17	1.9.3. Precipitados de sal 4
1.4.5. Pardeamiento superficial	1.9.4. Precipitados de creatina 4
1.4.6. Oxidación de producto loncheado	1.9.5. Hipoxantina
envasado 18	1.9.6. Cristales de grasa 4
1.5. Coloraciones producidas	1.10. Exudado en jamón envasado 4
por microorganismos 19	1.10.1. Exudado acuoso en piezas enteras 4
1.5.1. Manchas negras 19	1.10.2. Exudado acuoso en jamón
1.5.2. Manchas azules 20	loncheado envasado en
1.5.3. Coloración violeta	atmósfera protectora 4

1.10.3. Exudado de grasa en piezas enteras 45	3. Problemática de sabor/flavor	62
1.10.4. Exudado de grasa en piezas	3.1. Sabor salado	64
envasadas al vacío 45	3.2. Sabor ácido	69
1.10.5. Líquido superficial en lonchas envasadas al vacío	3.3. Sabor amargo	69
	3.4. Defectos de cala	70
1.11. Pérdida de vacío/gas 45	3.5. Rancio	73
1.12. Exceso de grasa intramuscular	3.6. Flavor metálico	
1.13. Coquera 47	3.7. Falta de aroma	
1.13.1. Coquera coxofemoral 47	3.8. Notas procedentes de la materia prim	
1.13.2. Coquera glútea o de la punta 50	3.8.1. Olor/flavor a cerdo-cuadra	
1.14. Desfibrado del jamón al lonchear 51	3.8.2. Olor/flavor sexual	
1.15. Deformación superficial 51	3.8.3. Carne cruda	
1.15.1. Hundimiento superficial/plegado	3.8.4. Pelo quemado	
excesivo 51	3.8.5. Origen patológico	76
1.15.2. Agarbanzado de la grasa 51	3.8.6. Origen alimenticio	
1.16. Agujeros/grietas 52	o medicamentoso	76
1.17. Linfonódulos 52	3.9. Notas desarrolladas durante el proces	so 76
1.18. Cabellos 52	3.9.1. Moho	
1.19. Condensaciones 53	3.9.2. Bodega húmeda	
1.20. Cupping 54	3.9.3. Picante	
1.21. Bajo rendimiento de loncheado 54	3.9.4. Floral	
1.21.1. Pieza entera	3.9.5. Pienso/tostado	
1.21.2. Deshuesado y pulido	3.9.6. Olor a tierra	
1.21.3. Lonchas correctas	3.9.7. Olor a patata	
	3.9.9. Agrio	
2. Textura 55	3.9.10. Amoníaco	
2.1. Textura blanda 56	3.9.11. Afrutado	
2.1.1. Textura blanda del magro 56	3.9.12. Cemento/plasma deshidratado	
2.1.2. Textura blanda de la grasa 57	3.9.13. Hierba	
2.2. Textura pastosa 57	3.9.14. Confinado	
2.3. Encostrado	3.9.15. Salmuera	79
2.4. Fibrosidad del jamón 61	3.9.16. Olor a pies	79
2.5. Adhesividad 61	3.9.17. Flavor a viejo en productos	
2.6. Resecado en la zona del codillo	envasados al vacío	79
y la punta	4. Conclusiones	79
2.7. Loncheabilidad deficiente	5. Bibliografía	79

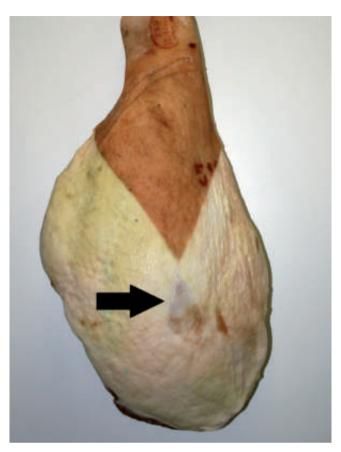


Imagen 1. Calvas de la grasa en jamón con corte V.

1. Aspecto

Se valora positivamente que el jamón tenga una conformación equilibrada, una maza homogénea y arropada de grasa (que la grasa cubra la zona caudal de la maza), la babilla ligeramente arropada de grasa, la punta recortada y sin exceso de grasa, un buen faenado, un corte adecuado de la piel en forma de "V", la grasa amarillenta y brillante con una ligera fusión, y el codillo redondeado. El secado paulatino le confiere un plegado natural con algunas hendiduras o acanalamientos fruto del proceso de secado, pero no deben ser excesivos, ya que indicaría un secado forzado o excesivo. Para el caso del ibérico, además, se valorará positivamente el presentar una forma del jamón alargada y estilizada, caña fina y que la grasa sea fluida y ceda al presionar con los dedos.

Se valora negativamente que haya pelos, suciedad, restos de epidermis, petequias, hematomas, vascularización en la corteza, calvas, grietas, ácaros, hundimientos, deformaciones, quemaduras, acortezamiento, aspecto plastificado, textura blanda debida

a exceso de proteólisis, apariencia de carne poco curada, manchas, pintas blancas en exceso, halos de nitrificación, irisaciones, puntos rojos o verdes, oxidación interna, precipitados en superficie y que suene a hueco.

Se valora positivamente que el aspecto del corte del magro y la textura visual sean uniformes (lo cual indica un proceso de secado gradual y en consonancia con el tipo de materia prima utilizada), que el color sea homogéneo del rosa al rojo púrpura (fruto de una buena generación y estabilización del color, maduración y secado uniformes), el magro brillante (debido a la fusión de la grasa), la presencia de grasa infiltrada con distribución uniforme (que le confiere jugosidad) y la presencia de algunas pintas blancas de tamaño grande (sugiere un proceso de maduración prolongado). En la zona grasa del corte se valora positivamente un contenido de grasa subcutánea e intermuscular equilibrado, un color de la grasa blanco-rosado brillante y sin oxidación interna, y en el exterior un color amarillo suave (MAPA, 2021).

1.1 Defectos de faenado

Estos problemas se refieren a los generados durante el perfilado o recorte de la pieza fresca (refrigerada o congelada) que se realiza en matadero o en sala de despiece. También suele realizarse en la propia industria, justo en el momento previo a la fase de salazón. Este recorte suele referirse al conjunto de la pieza, pero en especial al biselado del jamón y al corte serrano. También se refiere a la eliminación de la piel por la cara medial a la altura del codillo y a la eliminación de otras estructuras tisulares como el tocino o grasa sobrante en la cara anterior, punta, babilla y maza (tejido adiposo), aponeurosis (telillas) en la cara anterior (tejido conjuntivo), restos óseos en el hueso del puente (tejido óseo), piel en diversas zonas (tejido epitelial); todo ello para dotar al jamón de su característica morfología externa (Arnau et al.,

La imagen 1 muestra la presencia de calvas en la grasa; la imagen 2a presenta un ejemplo de depilado y limpieza superficial deficientes que conlleva una carga microbiana superior, una menor velocidad de penetración de la sal y secado de la piel más lento durante el reposo; en la imagen 2b se puede observar un cierto hundimiento de la maza (producido por el perfilado de la materia prima y por el grado de secado) que dificulta el loncheado manual y pro-

duce lonchas de peor aspecto; en la imagen 2c se muestra el aspecto brillante de la corteza cuando ha sido sometido a un tratamiento térmico elevado durante el escaldado; la imagen 2d muestra una separación excesiva de la grasa subcutánea en la zona de la babilla, la imagen 2e muestra un exceso de grasa subcutánea en un corte transversal efectuado con Tomografía Axial Computerizada (TAC) y la imagen 2f un jamón al que se le ha recortado el solomillo, lo cual genera un hueco y un mayor riesgo de deterioro en esta zona y en la arteria femoral.

En la punta se observa con frecuencia una separación de músculos (imagen 2g), lo cual puede ser debido a recorte excesivo de la punta, acciones mecánicas que tienen lugar en el matadero y en la sala de despiece (depilado, acción de los látigos, despiece cuando los tejidos no han alcanzado la consistencia óptima para ser cortados...) y a la falta de consistencia de la grasa. La consistencia de la grasa depende de su composición (e.g. la grasa más insaturada es más blanda, y la de animales más jóvenes contiene más agua), de la temperatura, de la madurez del tejido conjuntivo y de la proporción de las formas de cristalización de los triglicéridos (las formas α y β ' se forman más rápido, y la forma β , que es la más consistente, necesita más tiempo a temperatura de refrigeración para formarse).

1.2 Problemas de aspecto relacionados con los vasos sanguíneos y articulaciones

La presencia de sangre en los vasos sanguíneos o de exceso de líquido sinovial en las articulaciones causa rechazo en el consumidor. Es por ello por lo que se recomienda que los jamones provengan de animales criados y manejados con un nivel de bienestar óptimo, acreditado por una certificación independiente con aval científico y reconocida en la Unión Europea, de forma que se reduzcan los problemas de calidad tecnológica de la carne, los hematomas, el exceso de líquido sinovial, y los daños en las articulaciones y en la piel. Debe revisarse la aplicación de los protocolos de degollado para que el sangrado sea adecuado y minimice la cantidad de sangre residual en los vasos sanguíneos (corte limpio en el degollado y buena apertura de vasos para que la sangre drene rápidamente). Se recomienda reducir la cantidad de sangre presente en el jamón mediante masaje manual o mecánico (masajeadoras

Imagen 2a. Aspecto húmedo de la corteza debido a un depilado/pelado deficiente.

Imagen 2b. Hundimiento superficial en jamón.

Imagen 2c. Corteza con aspecto cocido.

Imagen 2d. Separación de la grasa subcutánea en la zona de la babilla.

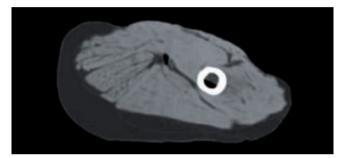


Imagen 2e. Exceso de grasa subcutánea (corte transversal efectuado mediante TAC).

Imagen 2f. Jamón al que se le ha extraído el filete.

Imagen 2g. Separación de músculos en la punta.

Imagen 3a. Hematoma interno.

Imagen 3b. Hematoma externo.

o bombos con vacío) y masaje después del salado que permita el desuerado de los vasos.

1.2.1 Hematomas

Los hematomas (**imágenes 3a, b**) son fruto de la acumulación de sangre causada por una hemorragia interna resultante de un golpe, una contusión o una magulladura durante la carga, el transporte y la descarga, por mezclas de animales de grupos sociales

diferentes, por un diseño deficiente de las cuadras en el matadero y por las convulsiones que pueden tener lugar durante el aturdimiento.

1.2.2 Vascularización

La vascularización superficial (veining) se refiere a la presencia de vasos sanguíneos que contienen restos de sangre en la corteza del jamón, que no son visibles en el animal vivo o recién sacrificado. Russo et al. (2003) observaron, evaluando medio millón de jamones, una incidencia de vascularización elevada (del 7,22%). Dicho problema comienza a manifestarse algunas horas después del sacrificio, se ve claramente a las 24 h y durante todo el proceso de curación (imagen 4). Se ha observado que la incidencia aumenta con el contenido de magro de la canal (especialmente a partir de un porcentaje superior al 47%) v al disminuir la grasa dorsal, con la conformación. con el tiempo entre salida de granja y sacrificio, con el aturdimiento por CO2, por una sección incompleta de los vasos sanguíneos durante el desangrado y también si se alarga el tiempo fuera de cámara antes de refrigeración (Nanni Costa et al., 2005). Además, se ha planteado la posible influencia de una temperatura alta de escaldado y de una refrigeración rápida de la canal. Conviene precisar que este defecto, si bien hace que el aspecto del jamón sea poco atractivo, según Russo et al. (2003) no perjudica la calidad del producto acabado. Sin embargo, en estudios preliminares realizados en la Stazione Sperimentale de Parma se ha observado que los jamones con mayor vascularización dan lugar a productos más rojos y de menor consistencia (resultados no publicados).

1.2.3 Petequias y equimosis

Las petequias son manchas de sangre pequeñas y puntiformes, de tamaño inferior a 3 mm de diámetro, que se encuentran en la superficie del tejido subcutáneo y en el conectivo insertado en la fascia muscular (perimisio). Histológicamente, las petequias están formadas por fibrina, trombos plaquetarios y eritrocitos extravasados a la periferia.

Las equimosis son manchas de sangre con un diámetro que no suele ser superior a 20 mm, situadas en el tejido muscular y subcutáneo, debidas, entre otros, al incremento de la presión sanguínea y a la actividad muscular durante el aturdimiento eléctrico (Velarde et al., 2000), y que no precisan de golpes/contusiones para aparecer.

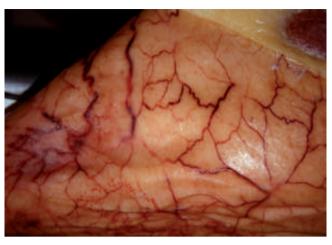


Imagen 4. Vascularización superficial.

Causas de las petequias:

- La utilización del sistema de aturdimiento eléctrico cabeza-cuerpo provoca un aumento muy importante de la presión venosa que puede causar petequias en el tejido subcutáneo (Petersen et al., 1986).
- Supercontracciones musculares durante la fase convulsiva que sigue al aturdimiento eléctrico. Es deseable un periodo de tiempo corto (< 10 seg) entre la aplicación de este sistema de aturdimiento y el sangrado. En cuanto se seccionan los vasos sanguíneos se disminuye el riesgo de producción de petequias. El aturdimiento eléctrico con fibrilación cardiaca aumenta el riesgo.

El degollado debería realizarse antes de finalizar la fase tónica (dura unos 10 segundos). Si el tiempo entre aturdido y degollado es superior a 15 segundos, o el degollado es deficiente, la posibilidad de recuperación de la consciencia del animal aumenta, teniendo un efecto negativo tanto desde el punto de vista de bienestar animal, como de la calidad de la canal y de la carne que se obtendrá.

1.2.4 Vasos hinchados

Como posible origen del problema se plantea:

- La formación de gas durante el proceso debido a la entrada de microorganismos, desuerado insuficiente después de lavado, etc. En este caso la adición de nitrito sódico podría reducir el problema, debido a su efecto conservador.
- Problema de retracción del magro, de forma que la reducción de volumen del jamón es inferior a la pérdida de masa (corregida por la densidad del producto compactado en cada momento del pro-

Imagen 5a. Vasos hinchados con oxidación a su alrededor.

Imagen 5b. Vaso hinchado en jamón encostrado.

ceso) originada por el secado, lo cual facilita la separación de los vasos en el interior por retracción insuficiente de la zona superficial (ver 2.3, acortezado). Cuando los vasos están abiertos se puede producir la entrada de microorganismos, mohos, oxígeno o ácaros que pueden generar un amplio abanico de problemas (**imágenes 5a, b**). Un enmantecado adecuado podría reducir este problema.

- Dilatación de la luz vascular que facilita la entrada de aire y contaminación de ácaros.
- El tipo de vasos podría tener un efecto, ya que las arterias tienen unas paredes más gruesas y elásticas que las venas. Las venas tienen una pared

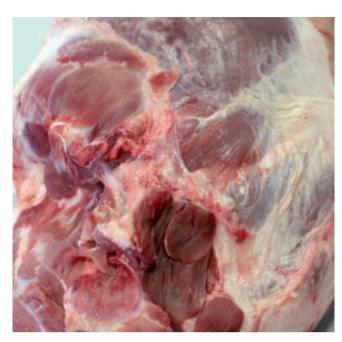


Imagen 5c. Jamón con aductor cubierto de telilla.

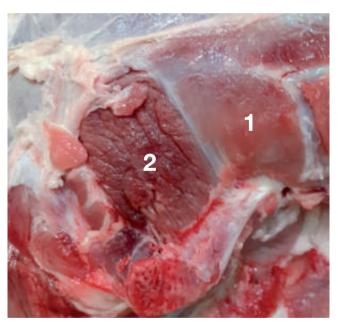


Imagen 5d. Jamón con aductor parcialmente cubierto de epimisio (telilla) (1) y sin cubrir (2).

más fina y son más distensibles que las arterias. En el animal vivo el 65% de la sangre está en las venas.

 El corte de la sínfisis isquiopubiana, cortando el borde medial del foramen obturador (hueso puente) en los jamones en sangre elimina la unión del aductor con la sínfisis pelviana, de forma que, si bien al deshidratarse la retracción se realiza mejor y se reduce el riesgo de que se produzcan oquedades, tiene como inconveniente que deja los vasos femorales circunflejos medios en una posición de apertura más fácil (especialmente en aquellos que mantienen la telilla del aductor, **imágenes 5c,** d) que puede provocar una mayor incidencia de vasos oxidados, que precisen repulido en el deshuesado del jamón.

1.2.5 Manchas verdes-ocres-marrones

En base al estudio de Moro et al. (2011) se considera que los defectos de manchas verdes u ocres (imágenes 6a, b, c, d) son debidos a la oxidación de ciertos pigmentos de la sangre, ya que suelen corresponderse con vasos sanguíneos y se observan especialmente en jamones grasos. Según dicho autor, el músculo que sufre mayor incidencia es el semitendinoso, seguido del semimembranoso (SM) y biceps femoris (BF). La naturaleza de las manchas parece depender de la presencia de hemoglobina (sangre) en el tejido. Del análisis histológico se deduce que la estructura del músculo y de los adipocitos no se ve afectada. La principal causa parece residir en el tratamiento del animal previo al sacrificio y aturdido, ya que el factor más importante es el día de sacrificio. No se ha observado efecto del sexo del animal, tipo de superficie utilizada en la cuadra durante la cría, alimentación con vitamina C, peso de la canal y edad al sacrificio. No se considera que el origen sea microbiano. Del análisis genético se vio la elevada dificultad de realizar una selección, ya que la heredabilidad fue cercana a cero (Moro et al., 2011).

Así pues, como hipótesis de trabajo se plantea que las manchas verdes u ocres provienen de la presencia de pequeños restos de sangre en los capilares que facilitan la oxidación durante el proceso (efecto catalítico del hierro y mayor permeabilidad del vaso al oxígeno que el conjunto de la grasa), que se inicia en el exterior, y a través de los vasos sanguíneos dicha oxidación va penetrando hacia el interior de la pieza (imágenes 6e, f). En este sentido también podrían ser zonas más fácilmente colonizables por mohos. El problema es más manifiesto en la zona proximal del jamón que en la distal, lo cual podría ser debido a diferencias en la exanguinación entre ambas zonas. También se observa mayor incidiencia en jamones Duroc e ibéricos de cebo que en los de montanera, lo cual podría deberse al contenido de antioxidantes de la materia prima asociada a la ali-

Imagen 6a. Manchas ocres-marrones.

Imagen 6b. Manchas ocres-marrones.

Imagen 6c. Manchas ocres-marrones.

Imagen 6d. Manchas ocres-marrones.

Imagen 6e. Oxidación de los vasos sanguíneos en la grasa subcutánea.

mentación de los animales y/o al efecto protector en los vasos producido por la grasa más fluida en los animales de montanera.

El buen desangrado de las arterias podría ser más importante para prevenir la oxidación interna del músculo que el de las venas, debido a la presencia de oxihemoglobina, y al hecho de tener mayor grosor y elasticidad que estas. Por tanto, la mejora del desangrado en matadero podría ser un sistema eficaz para reducir los problemas de oxidación en el interior de los jamones. La deshidratación osmótica durante el salado, y el posterior lavado del jamón podrían reducir el contenido de hemopigmentos en las zonas externas y reducir su visibilidad.

Para reducir este problema se propone analizar la materia prima para determinar la diferencia de incidencia entre proveedores. En caso de que las haya, deben indagarse las diferencias que puedan existir en relación con el manejo de los animales y con la adición de antioxidantes al pienso. También, evaluar las diferencias en estabilidad oxidativa de la grasa subcutánea comparando los proveedores con incidencias y aquellos sin incidencias. Evaluar la incidencia de vascularización superficial (veining) de la piel, y ver si hay diferencias entre proveedores. También, evaluar la incidencia y su relación con la merma y con la merma corregida por grasa entre las piezas sin este problema y las que lo presentan, ya que, en general, este aumenta con la merma. Por lo tanto, la reducción del porcentaje de piezas con merma excesiva debería reducir su incidencia, aunque no eliminarla. Adicionalmente, puede ser de utilidad reforzar los antioxidantes de la manteca (BHT, BHA, Origanox liposoluble, extractos ricos en tocoferoles...), y evaluar el efecto de añadir Origanox en el presalado.

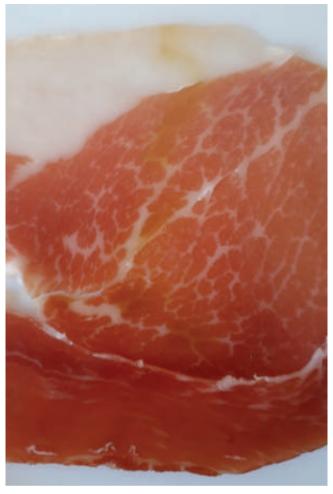


Imagen 6f. Oxidación de los vasos sanguíneos.

La adición temprana de antioxidantes a la zona donde el vaso comunica con el exterior podría contribuir a retrasar/disminuir el inicio del proceso de oxidación.

1.2.6 Manchas de sangre en la superficie de corte

La presencia de sangre en la superficie de corte (imagen 7) puede ser debida a pequeñas hemorragias locales producidas durante el aturdimiento eléctrico o durante las convulsiones posteriores. Se recomienda revisar el protocolo de degollado y estudiar el impacto de un enfriado muy rápido en el desangrado, ya que podría ser algo peor. Por otra parte, una acción mecánica descendiente cuando la canal está colgada, caliente y en "pre rigor" (desde el codillo a la maza) antes de su partición, facilitaría la evacuación de la sangre. El uso de vacío facilita la extracción de la sangre, y en particular el uso de

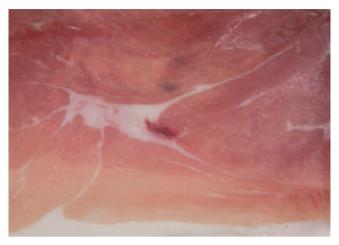


Imagen 7. Manchas de sangre en la superficie de corte.

bombos con vacío ablanda el jamón y facilita la extracción de sangre del interior de los vasos. La inyección de salmuera antes del salado también puede facilitar la evacuación de la sangre, y el desuerado de los vasos sanguíneos después del salado permite eliminar la salmuera y parte de la sangre.

1.2.7 Líquido sinovial

La presencia de una gran cantidad de líquido sinovial en las articulaciones (imagen 8a) es más común en animales que han sufrido un manejo deficiente antes del sacrificio (carga, transporte, descarga, cuadras en matadero, etc.). Este líquido, durante la fase de secado/bodega se seca y desprende un olor, similar al del cemento, que se impregna a los músculos adyacentes. Por otro lado, la bursitis (aumento de líquido sinovial) está relacionada con el descanso de los animales sobre superficies duras como cemento o slats durante su fase de engorde (Lyons et al., 1995). La cuantificación del problema en el deshuesado de jamones destinados a la elaboración de jamón cocido permite obtener una imagen de la situación y evaluar los progresos obtenidos al implementar medidas que mejoren el bienestar animal.

1.2.8 Piel o grasa de aspecto rojizo

Si bien el origen no está establecido, los resultados obtenidos parecen indicar un efecto de las técnicas de sacrificio en la aparición de dicho problema (Lo Fiego et al., 2009). Por otra parte, si se reduce mucho la cantidad de sal añadida (especialmente en el salado individual), se observa un aspecto más rojizo del jamón (**imagen 8b**), debido a que, al re-

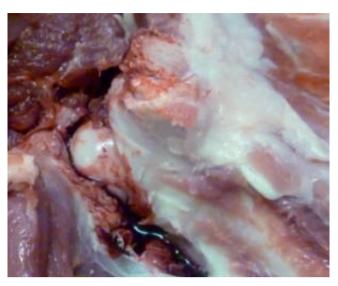


Imagen 8a. Líquido sinovial.

Imagen 8b. Coloración rojiza debido a la adición de poca sal.

ducir la cantidad de sal, la pieza exuda menos salmuera y se pierden menos hemopigmentos. Si en la fase previa al salado la piel se seca, esta quedará más oscura debido a que no se producirá el efecto dilución de los hemopigmentos debido a la deshi-

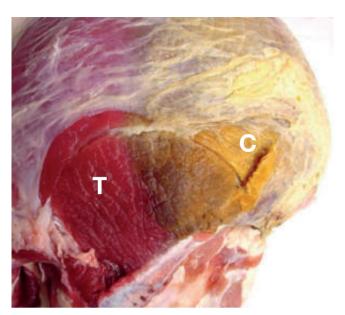


Imagen 9. Prevención de la quemadura de nitrito (C) mediante la adición de ascorbato (T).

dratación osmótica. Finalmente, la generación y absorción en la grasa de parte del pigmento Zn-protoporfirina IX (ZnPP) formado en el magro (pigmento natural que se forma en los jamones sin nitrificantes [ver 1.8.5, 1.8.1]), al ser más soluble en la grasa que en el magro, puede favorecer una coloración rojiza de la grasa en las zonas en que ésta no está oxidada (**imagen 27c**).

1.3 Quemaduras superficiales

1.3.1 Quemadura de nitrito

La quemadura por nitrito se asocia a una coloración verdosa de la superficie del jamón que se origina cuando se añade nitrito en presencia de oxígeno. Se produce en la superficie del jamón fresco cuando el óxido nítrico (NO), obtenido a partir de la reducción del nitrito, reacciona con el oxígeno dando dióxido de nitrógeno (NO2), que reacciona con el agua produciendo ácido nítrico, dando lugar a una coloración verdosa superficial denominada "quemadura del nitrito" (imagen 9). Según Bondoc & Timkovich (1989) el compuesto responsable del color verde es la nitrimioglobina que se obtiene de la reacción de la metamioglobina con el nitrito a pH < 7. Esta problemática no se observa si se utiliza únicamente nitrato como agente nitrificante (ya que las bacterias que transforman el nitrato a nitrito consumen el oxígeno absorbido). Tampoco se observa

si se añade nitrito y se mantiene el jamón en ausencia de oxígeno, o si se añade nitrito y ascorbato sódico o eritorbato sódico mezclados con una pequeña cantidad de sal, de forma que se disuelvan rápidamente. Sin embargo, si el nitrito y el ascorbato/eritorbato se mezclan con una cantidad elevada de sales/azúcares, el ascorbato/eritorbato y el nitrito reaccionarán en la propia sal con lo cual es posible que también se produzcan quemaduras de nitrito. Por otra parte, debe evitarse el contacto del nitrito con ácidos, ya que con ello se produce una descomposición muy rápida del nitrito a óxido nítrico. El nitrito debe mantenerse en seco, a una humedad relativa (HR) < 62%, no mezclarlo con ingredientes que contengan humedad, ácidos o reductores, y envasarse con materiales alta barrera a la humedad. La adición de substancias básicas como el citrato trisódico y el pirofosfato tetrapotásico reducen la reactividad del nitrito. Finalmente, debe tenerse en cuenta que la formación de estosgases (NO_v) afecta negativamente al color de la carne almacenada en la misma cámara en que se nitrifican los jamones, aunque dicha carne no esté en contacto directo con los jamones o con los nitrificantes.

1.3.2 Quemadura de congelación

Aspecto poroso/blanquecino/decolorado del magro y/o piel producido por la sublimación del hielo superficial de la pieza durante el almacenamiento en congelación (**imagen 10**). Se produce especialmente en aquellos jamones que se congelan durante mucho tiempo, sin la protección de films plásticos, si hay oscilaciones importantes de temperatura en el congelador. La zona que presenta quemadura por congelación al estar más seca absorbe la sal con mayor dificultad. Este problema puede confundirse con la quemadura de la sal.

1.3.3 Quemadura de la sal

Aspecto poroso y blanquecino que presenta la piel, debido a la cristalización de sal en su interior (**imagen 11**). Se produce durante el periodo de reposo, cuando se realiza un secado a HR < 75% y la corteza contiene aún una elevada cantidad de sal. Dicho problema se podría presentar también en jamones a los que se haya añadido cloruro potásico (KCI) y se mantengan a una HR de reposo inferior al 87,7%.

Imagen 10. Quemadura de congelación.



Imagen 11. Quemadura de la corteza por la sal.

1.4 Oxidación

1.4.1 Oxidación excesiva de la grasa superficial

En el jamón serrano, se acepta que la grasa en su parte externa tenga un color amarillo/ocre dorado, lo cual es fruto del proceso de oxidación que tiene lugar durante la maduración. La grasa subcutánea debe tener, en su parte interna, un color blanquecino-rosáceo. En ocasiones, se observa un color ocre rojizo oscuro de la grasa superficial, con cierta penetración al interior del producto, que es rechazado por los consumidores (imagen 12). El origen de este defecto, cuando afecta a toda la pieza, se atribuye a la alimentación del animal con grasa muy insaturada y/u oxidada, y con una concentración insufi-

Imagen 12. Coloración marrón superficial por oxidación excesiva de la grasa.

ciente de antioxidantes. Cuando los jamones son sometidos a estufaje con temperatura elevada el problema se agrava.

La presencia de metales (e.g. hierro) en la sal de salazón (por la propia sal o a partir de la oxidación de contenedores metálicos) y en el agua de lavado favorece la oxidación superficial. Por el contrario, el uso de antioxidantes en el pienso (e.g. vitamina E), en la sal nitrificante y en la grasa de enmantecado reduce la oxidación.

1.4.2 Oxidación del magro superficial

El incremento excesivo de la humedad relativa (HR) (e.g. durante los descarches) favorece la absorción de oxígeno en la superficie del jamón y la oxidación del pigmento muscular, especialmente en los jamones sin moho de cobertura. La adición de nitrito y la presencia de bacterias con capacidad nitratoreductasa frena la oxidación superficial del color. La presencia de sangre en la superficie puede favorecer la decoloración superficial, por lo que es aconsejable el lavado del jamón con agua después del salado.

Imagen 13a. Oscurecimiento del magro por nitrificación deficiente.

Imagen 13b. Oscurecimiento del magro por nitrificación deficiente.

Imagen 13c. Oscurecimiento del magro bajo la escápula.

Imagen 13d. Separación del magro de la escápula.

En los jamones y paletas, se produce en ocasiones una oxidación del color en la zona situada debajo de los huesos superficiales (hueso puente y escápula, respectivamente) debido a la combinación de una deficiente nitrificación y un ambiente microaerófilo (imágenes 13a, b, c). Para evitar esta oxidación debe asegurarse que se aplican nitrificantes sobre el hueso, y que este tiene suficiente humedad para absorberlos. Por otra parte, durante el secado puede producirse un hueco entre la escápula y los músculos adyacentes de la paleta debido a las tensiones que se producen, lo cual facilita su oxidación (imagen 13d). Para reducir este problema es necesario efectuar un enmantecado adecuado de la escápula y del magro de la maza en la paleta.

1.4.3 Agrisado del codillo

En el codillo es frecuente la presencia de decoloraciones debidas a la oxidación del magro cuando se produce entrada de aire (**imagen 13e(i)**, **e(ii)**), lo cual puede ser debido a un pulido incorrecto, huecos en la zona del codillo producidos por la deficiente retracción de la corteza al secar, puntos de cala mal

Imagen 13e(i). Oxidación del codillo.

Imagen 13e(ii). Oxidación del codillo.

tapados, vasos hinchados, etiquetas clavadas en dicha zona, cortes y pinchazos en el codillo, etc. La congelación del jamón con hueso durante el proceso de curación podría favorecer la oxidación del codillo por las tensiones producidas durante la congelación y la descongelación. El agrisado del codillo es más frecuente en jamones sin pata, y aumenta con el tiempo de curación. Para reducir este problema es conveniente evitar un escaldado agresivo (imagen 2c), (ya que aumenta la permeabilidad al oxígeno) y engrasar ligeramente el codillo y la parte superior del hueso. Con ello se frena el secado de dicha zona, y al tener más humedad la corteza se vuelve más flexible y se adapta mejor a la retracción del magro durante el secado (aunque se arruga más). Si no hay entrada de oxígeno del exterior se forman cavidades, pero no cambia el color.

1.4.4 Oxidación del interior del producto

La oxidación de partes magras del interior del jamón suele producirse por la entrada de aire a través



Imagen 13f. Oxidación en zonas en las que se produce entrada de oxígeno.

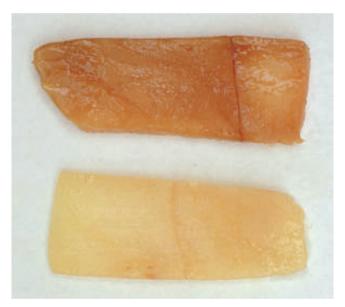


Imagen 13g. Pardeamiento de la grasa producido por ascorbato de sodio.

Imagen 13h. Pardeamiento de la grasa que recubre una capa de magro que ha sufrido elevada proteólisis producida por mohos.

Imagen 13i. Pardeamiento superficial del jamón (reacción de Maillard).

Imagen 13j. Pardeamiento de la grasa superficial del jamón cercana al magro (reacción de Maillard).

de los vasos (**imagen 13f**), cortes o separación de músculos. Las acciones que conduzcan a tapar estas vías reducirán la oxidación interna.

1.4.5 Pardeamiento superficial

Ascorbato/isoascorbato

Si el ascorbato/isoascorbato se añade a la grasa en cantidad elevada (e.g. debido a una mezcla poco homogénea), y posteriormente no se elimina durante el lavado, se produce su oxidación, y se generan, posteriormente, reacciones de pardeamiento (imagen 13g).

Pardeamiento de la grasa

Se puede producir pardeamiento de la manteca añadida por reacción de los aldehídos, que se pro-

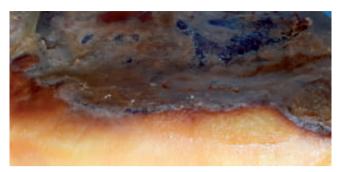


Imagen 13k. Pardeamiento de la grasa superficial del jamón cercana al magro (reacción de Maillard).

Imagen 131. Pardeamiento de la grasa superficial del jamón.

ducen fruto del enranciamiento de la grasa, con los productos derivados de la proteólisis que estén presentes en la superficie. Dicha proteólisis puede deberse a la acción de los enzimas de los mohos sobre el magro (e.g. en la grasa añadida al codillo) (imagen 13h), o por una proteólisis importante en el interior del producto. Los aminoácidos y péptidos fruto de dicha proteólisis pueden migrar del interior a la zona magra superficial (imagen 13i) o a la interfase magro/grasa donde se puede producir la reacción de Maillard que conduce al pardeamiento no enzimático (imágenes 13j, k). Este pardeamiento aumenta con el tiempo, temperatura, baja actividad de agua superficial, pH elevado y si se generan o difunden las substancias reactivas (i.e. aldehídos y aminoácidos) o hay presencia de catalizadores (e.g. iones metálicos). Sin embargo, en otros casos las causas de las diferencias en el pardeamiento de diferentes zonas de la grasa no parecen tan claras (imagen 131).

1.4.6 Oxidación de producto loncheado envasado

Los productos loncheados envasados en atmósfera modificada son especialmente sensibles a la oxidación del color rojo típico del curado (nitrosil-

Imagen 13m. Oxidación del color en jamón loncheado envasado.

mioglobina) cuando incide la luz en presencia de oxígeno (imagen 13m). Esta sensibilidad puede empezar a detectarse cuando el contenido de oxígeno del espacio de cabeza es superior al 0,1% (normalmente el cambio se situa entre 0,1 y 1% según el producto). Para evitar problemas de oxidación del color se recomienda hacer un sellado adecuado, reducir la absorción de oxígeno en el período previo y posterior al loncheado, incorporar agentes antioxidantes (en el pienso o en el producto), aumentar el nivel de vacío, reducir el espacio de cabeza (disminuir la relación gas: producto), utilizar absorbedores de oxígeno, utilizar materiales de envase alta barrera al oxígeno y que no sean transparentes, y reducir el tiempo de contacto con la luz.

El uso de absorbedores de oxígeno puede contribuir de forma muy positiva a la estabilidad del color (Dey & Neogi, 2019). El más conocido está basado en la aplicación de absorbedores en base a hierro, pero tienen la desventaja de su baja aceptabilidad y de que precisan entre 10 h o varios días para lograr absorber todo el oxígeno, y deben mantenerse en oscuridad para evitar el deterioro del color hasta que se haya agotado todo el oxígeno. Hutter et al. (2016), al utilizar un film de PET/SiOx en el que se depositó paladio, según la tecnologia propuesta por Yildirim et al. (2015), y envasando en una mezcla gaseosa que contenía un 5 % de hidrógeno, lograron en 2 minutos disminuir de un 2 % a un 0,47 % de oxígeno, y en tan sólo 35 minutos el oxígeno disminuyó

Imagen 14. Manchas negras producidas por Carnimonas nigrificans.

a valores inferiores a 0,05 %, en los que se mantuvo durante 21 días.

1.5 Coloraciones producidas por microorganismos

1.5.1 Manchas negras

Las manchas negras que se observan en el exterior de los jamones pueden ser consecuencia de hematomas (imagen 3b) o tener un origen microbiológico.

Algunos mohos como Cladosporium herbarum son de color oscuro y pueden ocasionar pequeñas manchas negras (Leistner & Ayres, 1968). Por otra parte, Hugas y Arnau (1987a) describieron otra problemática de manchas marrones que forman un limo blanco en condiciones aerobias de HR elevada y pasan a negro con el tiempo (imagen 14). Arnau y Garriga (1993) demostraron que dichas manchas negras se producían por acción de un microorganismo cuando crecía en un derivado cárnico, a temperatura inferior a 40 °C (óptimo 30-35 °C), conteniendo alguno de los siguientes azúcares: glucosa, maltosa, jarabes de glucosa o dextrinas. Con otros azúcares (e. g. sacarosa) no se forma la pigmentación marrón/negra, pero puede ser un foco de contaminación. La adición de glicina, L-arginina, L-glutamina y L-glutamato monosódico aumentan el pardeamiento. En el intervalo del 3% al 11% de sal, el crecimiento y pardeamiento observados son máximos cuando el contenido de sal es del 4%. Por otra parte, los ácidos, el sulfito, el nitrito sódico, la N-acetil-L-cisteína y la cisteína inhiben la reacción de pardeamiento. En jamones salados únicamente con sal (NaCl) no se observa la formación de este tipo de pardeamiento. Este microorganismo fue clasificado como una especie y género nuevos denominado Carnimonas nigrificans, (Garriga et al.,

Imagen 15a. Manchas de color azul en la superficie de carne fresca.

1998). Es importante señalar que no presentó patogenicidad en ratones infectados. Carnimonas nigrificans incluso es capaz de producir la reacción de pardeamiento cuando se añade en agua que tan sólo contiene glucosa y glutamato (Arnau & Garriga, 2000). El pardeamiento producido por Carnimonas nigrificans con algunos azúcares y aminoácidos, y las propiedades inhibitorias de algunas substancias muestra similitudes con la reacción de Maillard. Sin embargo, existen diferencias importantes en el comportamiento frente a la temperatura, el oxígeno y azúcares implicados que pueden estar relacionados con el metabolismo de Carnimonas nigrificans.

Para eliminar esta problemática, en primer lugar, se debe localizar su origen, que con frecuencia puede ser detectado por la situación y forma de las manchas en jamones salados con poca sal y con excesivo tiempo de reposo en contenedor. En segundo lugar, se deben incrementar las medidas higiénicas y utilizar desinfectantes de amplio espectro. Los amonios cuaternarios deben evitarse ya que pueden favorecer este problema al eliminar microbiota competitiva de C. nigrificans. Los productos elaborados pueden constituir un foco de contaminación mientras la superficie esté húmeda, especialmente cuando la coloración tiene una tonalidad marrón o se observa un limo blanco superficial, pero dejan de serlo en estadios más avanzados cuando la superficie está seca.

Otro microorganismo capaz de producir manchas negras/azuladas es *Pseudomonas fluorescens*, el cual fue aislado por Kröckel (2009) de carne de cerdo y de vacuno con manchas negras y por Andrade *et*

al., (2012) en jamones de cerdo ibérico con manchas negras. Este microorganismo a diferencia de *Carnimonas nigrificans* puede dar coloraciones negras en la carne y grasa con tan sólo la adición de sal. Para evitar este problema, estos autores recomiendan mantener los jamones a una temperatura inferior a 5 °C hasta que la concentración superficial de sal sea superior al 2% o la actividad de agua superficial sea inferior a 0.92.

1.5.2 Manchas azules

La presencia de manchas de color azul en la superficie del jamón fresco (**imagen 15a**), que oscurecen con el secado, puede relacionarse con el crecimiento de *Pseudomonas fluorescens* y de *Pseudomonas libanensis* (Cantoni et al., 2001), pero no se han encontrado referencias de que produzca problemas en productos curados.

Debe revisarse el programa de limpieza y desinfección y asegurarse de que se hace bien, evitando la formación de biofilms y el goteo debido a condensaciones. Las superficies deben secarse a la mayor brevedad posible. Conviene analizar el agua utilizada, ya que Dabboussi et al. (1999) detectaron Pseudomonas en agua de manantial, y Cantoni & Chiappa, (2011) atribuyen el problema a su presencia en el agua de pozo o en el agua de red utilizada, probablemente ligado a un periodo de precipitaciones copiosas, ya que es un microorganismo presente en el ambiente vegetal. En ocasiones se da solo en una de las líneas de trabajo, por lo que debe inspeccionarse a fondo cuáles son las diferencias respecto a las otras líneas que hacen que haya mayor incidencia. Generalmente se suelen ver más afectados el tejido conjuntivo y la grasa que el magro, quizas porque el pH de este suele ser inferior.

1.5.3 Coloración violeta

Es un problema común en alimentos amiláceos producida por *Serratia rubidae* (Flórez *et al.*, 2001), pero poco común en jamón curado. La adición de harina a la grasa y el secado a temperatura elevada y/o HR elevada puede favorecer su crecimiento.

1.5.4 Coloraciones ocres

Parecen ser producidas por un exceso de humedad en la superfície del jamón, especialmente en la grasa superficial, antes del enmantecado, que favorece el crecimiento de microorganismos lipolíticos

Imagen 15b. Manchas ocres.

en la interfase jamón/grasa añadida (imagen 15b). Así pues, se debe evitar un enmantecado prematuro, reducir la HR ambiental antes del enmantecado para secar bien la grasa, reducir el crecimiento de microorganismos en superfície y evitar condensaciones de agua en la superfície del jamón previo al enmantecado. Para evitar dichas condensaciones, los jamones deben estar a una temperatura superior a la de la sala de enmantecado o la HR ambiental debe ser suficientemente baja para que no se alcance el punto de rocío.

1.5.5 Crecimiento indeseado de mohos

En el jamón curado, a diferencia de los embutidos curado-madurados, no se realiza una siembra de mohos, por lo que es de esperar que se produzca un crecimiento de la microbiota presente en el ambiente si las condiciones de la superficie (a_w, conservadores, nutrientes...) y ambientales (temperatura, HR) son apropiadas. Esta microbiota ambiental puede generar, si la HR es elevada, un aroma desagradable que se transmite al magro subyacente. Además, algunos de estos mohos son micotoxigénicos (Montanha et al., 2018; Núñez et al., 1996). Los antifúngicos que se difunden poco hacia el interior del jamón (e.g. parabenos) son eficaces en la prevención del crecimiento fúngico. Sin embargo, si se difunden hacia el interior del jamón, su eficacia se pierde en unas semanas (por ej. benzoato, sorbato). Otros antifúngicos se degradan (pimaricina) o se metabolizan por acción de la microbiota presente. Por ejemplo, el sorbato puede metabolizarse a 1,3-pentadieno confiriendo al jamón un aroma desagradable a gueroseno.

Mohos en el exterior del jamón

En los jamones curados se produce un crecimiento de mohos a HR elevada, y, prácticamente no se pro-

Imagen 16. Crecimiento de mohos de color amarillo producidas por *Aspergillus ochraceus*.

duce cuando la HR < 65%. Los mohos, en ocasiones, pueden originar problemas y en otros casos se interpretan como un índice de buena calidad del producto. Algunos de los mohos tienen aspecto de barbas de algodón (Rhizopus, Thamnidium, Mucor), el color puede ser negro (Aspergillus niger, Cladosporium herbarum, Alternaria Tenuis), blanco (Sporotrichum carnis y Geotrichum), verde (P. expansum, P. oxalicum, P. notatum), rojo (P. purpurogenum), amarillo (Aspergillus ochraceus) (imagen 16). Algunos de los mohos negros producen pigmentos de este color que penetran ligeramente en el jamón, y que no se eliminan mediante lavado (imágenes 17a, b, c). Los mohos del género Penicillium se presentan principalmente en la etapa de reposo e inicio de secado en que la a_w es alta, y la temperatura baja. Al bajar la a_w y aumentar la temperatura los Aspergillus constituyen la microbiota fúngica mayoritaria. El moho de color violeta (Aspergillus halophylicus, Huerta, 1986; Aspergillus ruber, Leistner & Ayres, 1968), denominado también coloquialmente "manto de la virgen", era muy común cuando se utilizaba ácido bórico como conservador (imagen 18), pero actualmente no se observa dicha coloración debido a que este conservante no está autorizado.

Prevención

Para prevenir el crecimiento de mohos es importante evitar la contaminación de la materia prima en los mataderos, salas de despiece, equipos y cintas antes y durante la salazón. La contaminación de estos equipos origina un mayor crecimiento de mohos en las zonas en contacto con el jamón. También se debe evitar la contaminación del producto después del lavado, se deben desinfectar los pasillos y secaderos, y evitar, durante el proceso, la contamina-

Imagen 17a. Manchas negras producidas por mohos.

Imagen 17b. Manchas negras producidas por mohos.

Imagen 17c. Manchas negras producidas por mohos.

ción procedente de otros jamones que tengan mohos indeseables. Además, resulta útil:

- Realizar una desinfección ambiental y de la maquinaria.
- Utilizar ozonizadores en lugares donde no haya materias primas que se enrancien.
- Utilizar antifúngicos superficiales. El sorbato, si bien

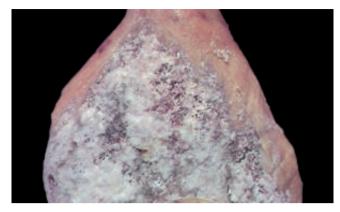


Imagen 18. Moho de color violeta producido por la adición de ácido bórico.

Imagen 19. Mohos en el interior del jamón.

es efectivo para frenar el crecimiento de mohos en productos ahumados secados a baja HR y de corta curación, no es recomendable utilizarlo en productos de más larga curación en los que pueda darse el crecimiento de mohos o levaduras, ya que puede metabolizarse a trans 1,3-pentadieno.

- Colgar los jamones de forma que no haya contacto entre ellos ni con las estructuras de soporte, para que no se produzcan microclimas con alta HR.
- Evitar la formación de grietas en los jamones, y si no, taparlas antes de que se colonicen por mohos.
- Envasar al vacío o en atmósfera protectora con un contenido de oxígeno del espacio de cabeza inferior al 0,15%, utilizando para ello materiales de alta barrera.
- Mantener el producto, cuando esté sin envasar, a
 HR < 65% y a temperatura baja.
- Utilizar, cuando sea posible, lámparas ultravioletas.
- Conservar el jamón congelado a T < -12 °C, ya que algunos mohos (e.g *Mucor, Rhizopus, Thamnidium*) pueden crecer a temperatura superior a -10 °C.

Imagen 20a. Jamón con remelo.

Mohos en el interior del jamón

Se observan cuando se produce entrada de aire en el interior de los vasos, en grietas, oquedades, coqueras, articulaciones, espacios intermusculares y zonas de calado mal cerradas (**imagen 19**). La calidad del jamón disminuye debido al rechazo que provoca su aspecto, a la textura pastosa que aparece con frecuencia a su alrededor y al flavor anómalo que le pueden conferir. Para evitarlo se debe mantener la estructura íntegra, realizar un secado gradual y enmantecar de manera adecuada para evitar que se produzcan tensiones interiores que separen los vasos o tejidos y faciliten la entrada de aire y el crecimiento fúngico.

1.5.6 Remelo

Se entiende por remelo la formación de un limo superficial cuando la velocidad de deshidratación es muy baja (**imagen 20a, b**). Los cocos gram (+)

Imagen 20b. Jamón con remelo.

catalasa (+) son las bacterias predominantes en este limo (Poma, 1987). Los jamones sin nitrificantes, especialmente sin nitrito añadido, son más sensibles a la formación de remelo. El pH superficial aumenta debido a la formación de remelo, lo cual favorece la formación de precipitados de Na₂HPO₄ (Arnau et al., 1993). Arnau et al. (2003a) observaron que en la superficie del jamón, el pH y contenido de magnesio al final del reposo y de proceso, el índice de proteólisis a final del reposo y las cenizas a final de proceso fueron superiores cuando la HR del reposo se hizo a 85 ± 3% que cuando se realizó a 78 ± 3% o a 52 \pm 3%. Una vez formado el remelo, la superficie del jamón seca peor, debido a la presencia de fosfatos (especialmente si T < 5 °C, ver 1.9.2) y quizás también por el limo de origen microbiano formado. Cuando se seca el jamón con remelo, se forma con mayor facilidad una costra dura (imagen 21) que dificulta la retracción durante el secado y confiere al jamón un flavor a humedad típico de los jamones arremelados. Esta costra dura se ve facilitada también por la menor superficie cubierta de exudado de grasa que presentan los jamones con remelo. Este problema se reduce mediante un secado rápido

Imagen 21. Aspecto de un jamón que presentó remelo durante el reposo.

después del lavado y en las dos semanas posteriores

Para evitar el remelo, además, se recomienda:

- Limitar el crecimiento excesivo de microorganismos en superficie antes de salar (para ello debe haber buenas condiciones higiénicas en matadero, sala de despiece y transporte) y nitrificar, y salar tan pronto como la temperatura esté entre 1 °C y 3 °C en el centro del jamón, evitando tiempos de cámara excesivos y temperaturas de los perniles frescos o durante la salazón superiores a 3 °C.
- Evitar jamones con pH > 6,2, denominados DFD (oscuros, firmes y secos), ya que son más sensibles a la formación de remelo y a la formación de cristales de fosfato.
- Evitar el contacto entre piezas en los contenedores de salazón, ya que la zona afectada al estar menos salada sufre una menor deshidratación osmótica y en ella crecen más fácilmente los microorganis-

- mos (por su actividad de agua superficial (a_{ws}) elevada).
- En los procesos en los cuales los jamones no se cubren totalmente de sal, sino que se añade una cantidad de sal limitada y se mantienen en contenedores, es conveniente realizar un frotado de la piel con sal, tanto en el primer como en el segundo salado para evitar el crecimiento de microorganismos en ella. Una vez absorbida la sal, los jamones deben colgarse para que sequen, ya que si no, en las zonas no cubiertas por salmuera se produce remelo incluso en la etapa de salado. En los procesos en que los jamones no están en contenedores, sino en contacto directo con el aire de la cámara (e.g. jamón de Parma), mientras que en el primer salado se busca una HR de 75-90% para asegurar la disolución de la sal, en el segundo salado la HR se disminuve a 70-80% para facilitar una ligera deshidratación (Parolari, 1996), en la que las zonas no cubiertas de salmuera se secan, y aquellas en las que hay salmuera, esta tiende a concentrarse cuando la HR < 75%.
- Asegurar que el agua de lavado de los jamones sea potable en el momento de su uso. Una contaminación elevada del agua, por uso de agua reciclada o por deficiente desinfección de la maquinaria facilitaría el remelo.
- Después del lavado, al colgarlos, debe evitarse el contacto entre jamones o con las estructuras; para ello es conveniente sujetarlos bien, de forma que se impida su rotación y se peguen unos con otros. En las zonas de contacto se pueden producir olores anormales. Así, por ejemplo, en la piel, debido a su pH elevado, a veces se presentan olores que recuerdan a los típicos de "cala" cuando contacta con otra piel/grasa o con la estructura.
- Facilitar el flujo de aire entre jamones. Dejar libre un espacio de unos 50-60 cm por encima del suelo para permitir que el aire fluya de forma homogénea. Cuando se producen cambios de jamones a otras salas a temperatura más elevada, se debe adecuar la humedad relativa ambiental para evitar condensaciones superficiales.
- El uso de substancias conservadoras permitidas, si bien no es necesario si se dispone de una buena tecnología de secado, puede ser útil, cuando haya falta de potencia en los equipos, para limitar el crecimiento de microbiota indeseada en superficie, que afecte negativamente al producto.

Imagen 22. Ácaro Tyrophagus putrescentiae.

Con todo ello se consigue que la superficie del jamón esté limpia y la grasa brillante, facilitándose el sudado de la grasa, que contribuye al aroma típico y a proteger el jamón, en las zonas no enmantecadas, cuando la humedad ambiental es inferior al 75% (Arnau et al., 2003a).

1.5.7 Exudado limoso en el interior del jamón

La presencia de exudado limoso, que forma hilos adherentes en jamones que se elaboran a partir de piezas deshuesadas ("ropy slime"), se considera que es un problema de contaminación por bacterias lácticas psicrótrofas capaces de producir polisacáridos de alto peso molecular, que protegen a los microorganismos del secado. A pesar de que no se observa ningún tipo de olor anormal, su presencia resulta desagradable. La producción de limo se ha relacionado, entre otros, con las condiciones de producción, formación de biofilms y el uso de sacarosa (Lulietto et al., 2015). Es un problema muy frecuente en productos cocidos loncheados envasados en atmósfera modificada.

1.6 Ácaros

La presencia de ácaros (imágenes 22, 23), especialmente en jamones de larga curación, constituye uno de los problemas más importantes del jamón curado. Su presencia en los jamones curados deteriora la calidad, y puede provocar alergias a los manipuladores (Tafuro et al., 2015) y consumidores (Rodríguez del Río et al., 2012). La mayoría de los ácaros presentes en los secaderos de jamones corresponden a la especie *Tyrophagus putrescentiae*. Otras

Imagen 23. Aspecto de jamones con ácaros.

especies que se han encontrado son: Tyrolichus casei, Glyciphagus domesticus, Tyrophagus longior, Tyrophagus palmarum, Cheyletus eruditus, Androlaelaps casalis casalis, Cheletomorpha lepidopterorum, Blattisocius dentriticus y Carpoglyphus lactis. Los ácaros predadores (e.g. Cheyletus eruditus) poseen una velocidad de movimiento considerablemente superior (Jorrin et al., 2001), pero su capacidad depredadora es insuficiente para el control de las poblaciones de ácaros en secaderos de jamón (Ortiz-Lemus, 2014).

La colonización del jamón por ácaros está afectada por la contaminación de las instalaciones o las piezas y por diferentes factores ambientales (mohos, HR, temperatura, compuestos aromáticos...). Las condiciones ambientales presentes en muchos secaderos, junto con la elevada prolificidad de las especies de ácaros presentes en el jamón hacen difícil establecer medidas eficaces para su erradicación o un buen plan de control. En las últimas décadas se han

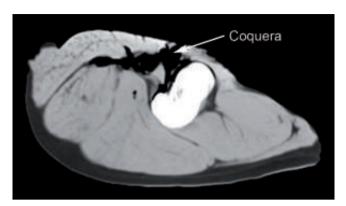


Imagen 24. Imagen obtenida mediante un tomógrafo de un jamón con coquera.

publicado diferentes estudios sobre métodos para eliminar los ácaros del jamón por métodos físicos, químicos y biológicos (Arnau et al., 1987c; Arnau & Guerrero, 1994; Arnau, 2011; Asensio, 2016; Córdoba et al., 2001: Guerrero & Arnau, 1995: López, 2009: Lorenzo & Flores, 1988; Ortiz-Lemus et al., 2020 y 2021; Sánchez-López & Navarrete, 2005; Sánchez-Molinero et al., 2010; Schmidt, 1996; Zhao et al., 2016). Para la eliminación de los ácaros en los secaderos vacíos se han propuesto productos químicos (Guerrero & Arnau, 1995; Lorenzo & Flores, 1988; Migaud & Frentz, 1978; Schmidt & Cremmling, 1975) que en la mayoría de los casos deben ser aplicados por empresas especializadas, ya que su uso por personal no especializado puede resultar peligroso. Sin embargo, no se dispone de un método que combine al mismo tiempo eficacia contra todos los estadios de su desarrollo, facilidad de aplicación, que sea económicamente asumible, no suponga ningún riesgo para los operarios, sea inocuo para el consumidor y que no afecte negativamente al jamón o a las instalaciones.

La lucha contra los ácaros, que sea compatible con la calidad del jamón, precisa la aplicación de una metodología que tenga como eje principal la prevención, que debe ser complementada con la monitorización de las poblaciones de ácaros para estar seguros de que las medidas preventivas son efectivas. Para ello se propone:

– Evitar/reducir la contaminación de las instalaciones por ácaros. La limpieza de instalaciones, utensilios y equipos, buenas prácticas higiénicas del personal (calzado, ropa, etc.), y evitar que entren jamones contaminados (e.g. retornos, maquilas), ya que es crucial para eliminar las infestaciones. Tener un buen plan de desratización, ya que los roedores

pueden actuar como vectores de contaminación. Se recomienda el uso de insecticidas adhesivos para los pies antes de entrar en un secadero. Se ha planteado incluso que los ácaros puedan, en algunos casos, proceder de las pezuñas de los perniles, especialmente en el caso de los cerdos criados en extensivo. El aislamiento, la seguedad (HRmedia < 60%) y un tratamiento por calor son medidas que aplicadas de forma sistemática reducen de forma drástica la contaminación, y permitirían iniciar el proceso de curación sin que existieran iamones o estructuras contaminadas. La eliminación de los ácaros de las instalaciones mediante un vacío sanitario constituye uno de los ejes principales para su control en el jamón, que, si las instalaciones lo permitieran, debería efectuarse periódicamente (Sánchez-López & Navarrete, 2005).

- Reducir el crecimiento de mohos, que constituyen la principal fuente de alimentación de los ácaros, hasta que el jamón no esté engrasado. Para ello, es importante mantener unas condiciones de higrometría ambiental suficientemente secas que permitan frenar el desarrollo de los mohos. En las primeras etapas del reposo, la HR debe permitir la penetración de la sal superficial. Posteriormente, la HR puede disminuirse de forma paulatina sin que se produzca encostrado del producto. Una HR inferior al 65% frena el crecimiento de mohos, aunque puede depender tanto de la temperatura como de la composición superficial (e.g. azúcares, grasa...). En las fases iniciales del proceso, el crecimiento de mohos aporta más problemas que ventajas, y constituye un alimento que prepara el terreno para la invasión posterior de los ácaros. Cuando el jamón está cubierto con una ligera capa de grasa, esta reduce el gradiente de humedad entre el ambiente y la superficie del magro, además permite cierta permeabilidad al oxígeno, por lo que se puede producir crecimiento de moho incluso cuando la HR es baja.
- Prevenir coqueras, tapar grietas y huecos con manteca para evitar que constituyan un refugio para los ácaros que impida su erradicación. Para ello se debe identificar el momento adecuado, el tipo de manteca y la forma específica de aplicación para cada proceso. En este sentido la trazabilidad individual puede aportar información muy útil, y la tomografía computarizada (imagen 24) puede per-

mitir, para cada tipo de jamón, conocer la evolución del contenido de agua de las zonas de riesgo y determinar cuándo se inicia la formación de cuevas. Si el engrasado se efectúa de forma adecuada y en el momento adecuado para cada tipo de jamón, se disminuye de forma muy importante el problema, ya que, según Schmidt (1996) si la HR se sitúa entre 55-60% en el exterior del jamón se eliminan las formas móviles, y si es inferior al 55% durante dos semanas se eliminan todos los estadios de crecimiento, siempre que no existan microclimas a HR superiores (zonas de contacto del jamón con estructuras, paredes y con otros jamones o con la etiqueta, huecos bajo la pezuña, grietas...) ni puedan entrar en el interior del jamón para refugiarse del ambiente seco. En este sentido es importante reducir el tamaño de la etiqueta de identificación para minimizar microclimas húmedos. Es muy importante que en la fase previa al enmantecado se minimice, mediante aislamiento y condiciones ambientales, la contaminación por ácaros. Una limpieza de los jamones y estructuras con agua caliente (e.g. 80 °C) puede ayudar a reducir dicho problema. En los jamones de larga curación deberán realizarse enmantecados adicionales si aparecen grietas fruto del proceso de secado. En el engrasado debe evitarse que queden zonas sin cubrir, ya que en ellas pueden crecer mohos donde los ácaros pueden vivir.

- Prevenir que las formas móviles puedan infestar otros jamones o secaderos. Cuando los jamones están protegidos con manteca, la disminución de la HR permite evitar que las formas móviles contaminen otros jamones. Una baja HR en los pasillos y áreas transitadas constituye una forma limpia de evitar que constituya una vía por la que los ácaros contaminen los jamones de otros secaderos.
- Prevenir la contaminación de los jamones al final del proceso mediante su envasado al vacío. Con ello se elimina este problema durante la comercialización y se uniformiza la textura. Sin embargo, aumenta los problemas de textura blanda superficial debido a la acción de las proteasas fúngicas. En jamones envasados al vacío, el tratamiento por altas presiones constituye un método a explorar ya que puede eliminar los ácaros en todas sus formas viables. El uso de presiones superiores a 300 MPa durante 30 segundos o más, permitió eliminar el problema de toxoplasmosis en carne picada de cerdo

inoculada (Lindsay et al., 2006), mientras que se precisaron 600 MPa durante 20 minutos para eliminar el problema en jamones elaborados a partir de cerdos inoculados experimentalmente (el tratamiento de 3 y 10 minutos a 600 MPa no fue efectivo) (Gracia et al., 2020). Finalmente, es importante recordar que un tratamiento a 500-600 MPa durante 6 minutos reduce el riesgo de rechazo de un lote por presencia de *Listeria monocytogenes* a niveles compatibles con la exportación de jamón curado (Grèbol, 2005).

- Monitorizar, mediante trampas y cebos específicos, la dinámica de las poblaciones de ácaros, ya que ello constituye una herramienta útil para la toma de decisiones sobre las medidas correctivas más apropiadas a adoptar en función de la contaminación detectada en cada secadero, y de la eficacia de dichas medidas correctivas en el control de los ácaros (Amoah et al., 2016; Thind et al., 2005).

Esta propuesta ha dado buenos resultados en empresas de jamón de cerdo blanco que lo han aplicado. Queda por investigar la posibilidad de la combinación óptima de periodos de secado a HR baja (50-60%) y moderada (60-70%). El R.D. 486/1997, sobre disposiciones mínimas de seguridad y de salud en los lugares de trabajo, indica que la HR debe estar comprendida entre el 30 y el 70%, y en los locales donde existan riesgos por electricidad estática, la HR será como mínimo del 50%, por tanto, es un factor adicional a tener en cuenta a la hora de aplicar dichas medidas.

1.7 Coleópteros y dípteros

Suñer et al. (1987), en un estudio realizado en 5 empresas de jamones encontraron restos de 31 especies de dípteros y 44 de coleópteros en las trampas de luz. Entre ellos destacan:

1.7.1 Necrobia rufipes

Entre los coleópteros que se encuentran con mayor frecuencia en los secaderos de jamones destaca *Necrobia rufipes* (polilla). La vida de los adultos (**imagen 25a**) es de unos 14 meses y el ciclo es de 6 semanas o más, siendo su temperatura óptima de 30-34 °C y la HR > 50%.

Prevención

Se requiere una atención especial en la recepción de jamones curados, de forma que se asegure que

Imagen 25a. Necrobia rufipes (polilla).

Imagen 25b. Larvas y ninfas de $Piophila\ casei.$

Imagen 25c. Jamón infestado de saltón.

no presenten este problema en ninguna de sus formas móviles (larva o adulto), realizando una cuarentena y monitorizando con trampas (Savoldelli *et al.*, 2020). También se debe evitar introducir jamones de retorno, ya que pueden ser portadores de huevos, larvas o adultos.

También, deben minimizarse los focos de atracción en las entradas, revisar las aberturas y las telas mosquiteras y monitorizar su presencia mediante trampas específicas, especialmente si es un problema que se presenta con frecuencia en la empresa o en alguno de los proveedores.

Acciones paliativas

Evitar que los jamones de las áreas contaminadas se desplacen a zonas que no lo estén. Mantener los jamones afectados a una temperatura inferior a 10 °C y HR < 50%, ya que así se para el ciclo. Congelar los productos afectados que ya están al final del proceso para eliminar las formas móviles, pulir para eliminar las polillas superficiales, y envasar al vacío para evitar que los huevos eclosionen. En la zona de deshuesado, eliminar diariamente los restos de pulido de los jamones. En los productos en proceso, si hay larvas, seleccionarlos, congelarlos y deshuesarlos.

Conviene aplicar un tratamiento térmico a los carros (e.g. un día a 55 °C es efectivo, también lo son temperaturas más elevadas con tiempos inferiores), utilizar cuerdas nuevas y revisar diariamente los secaderos (evaluar presencia de adultos, ninfas y larvas). Si no se puede realizar un tratamiento térmico, tratar los carros con insecticida y lavarlos. Limpieza a fondo y fumigación de los secaderos antes de volver a llenarlos. La aplicación de insecticidas es útil para eliminar las formas móviles, así se evita que se cierre el ciclo, pero no permite eliminar los huevos o larvas situadas dentro del jamón. Hay que recordar que no se pueden aplicar insecticidas sobre el jamón.

El engrasado del producto a temperatura elevada elimina las larvas y huevos más superficiales y dificulta los movimientos de las formas móviles.

Estas acciones intensivas deben mantenerse hasta que todos los jamones afectados hayan salido de la fábrica y haya evidencias claras de ausencia del problema. Para ello, puede ser de utilidad, aparte del control visual, utilizar trampas específicas¹.

Recientemente se ha estudiado el uso de fluoruro de sulfurilo para su tratamiento durante 48h a 23 °C, permitiendo un control total de larvas, pupas y adultos con una dosis de 8 g/m³, mientras que los huevos requieren 20,88 - 24,72 g/m³ para prevenir su eclosión (Hasan *et al.*, 2021).

¹ https://www.sanitrade.es/monitorizacion-y-captura/63-xlure-mst.html

1.7.2 Saltón (Piophila casei)

Uno de los problemas que tradicionalmente ha tenido que afrontar el subsector del jamón curado, es la amenaza que suponen las larvas de *Piophila casei* (**imágenes 25b, c**) durante el proceso de curación. La puesta de huevos se efectúa sobre el jamón en vías de secado. Aproximadamente a las 36 horas nacen las larvas y en condiciones favorables se desarrollan en unos 7-8 días, al cabo de los cuales se dirigen a la parte más deshidratada para formar la pupa, que tiene una longitud de 4 a 5 mm y color marrón dorado. Unos diez días más tarde nacen las moscas adultas que tienen una longitud de 2,5 a 4 mm, con tórax y abdomen de color negro.

La larva penetra en el interior del jamón, devorando la musculatura y partes adiposas, y puede pasar fácilmente de un jamón a otro, realizando saltos de 10 cm o más, por lo que coloquialmente se le denomina saltón. Las larvas pueden resistir temperaturas entre –22 °C y 55 °C, y pueden ocasionar trastornos intestinales, ya que resisten bastante bien la acidez (Arnau *et al.*, 1987b; Suñer *et al.*, 1987).

Las medidas de prevención son análogas a las de *Necrobia rufipes*.

1.8 Problemas de aspecto de origen fisicoquímico

1.8.1 Halos de color

Halos internos

Se producen en aquellos jamones en los que el nitrito añadido no alcanza el centro de la pieza (imágenes 26a, b), por lo que la zona central de la misma o bien no se nitrifica, o lo hace en menor cantidad en estadios más avanzados del proceso. La forma geométrica del halo sugiere que el factor condicionante de la nitrificación sería la difusión del óxido nítrico y no la del nitrito. Si el factor condicionante fuera la difusión del nitrito, se esperaría que su difusión a través de la grasa subcutánea e intermuscular fuera más lenta que a través del magro, mientras que en la mayoría de los casos se observa una nitrificación bastante homogénea. Cuando no se produce nitrificación en la zona interior del halo, se forma paulatinamente el pigmento Zn-protoporfirina IX (ZnPP) (Lores et al., 2011). La Zn-PP se forma en dos pasos, el primero por desmetalización del hierro por acción del enzima ferroquelatasa (más activo a

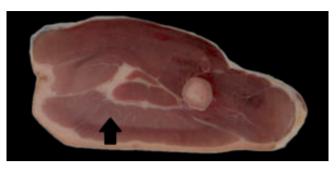


Imagen 26a. Halos de nitrificación en producto tratado con nitrato y nitrito.

Imagen 26b. Halos de nitrificación en producto tratado con nitrato y nitrito.

pH bajo), y el segundo por integración del Zn en el grupo hemo. La reacción de transmetalización debe estar ligada a otras reacciones, ya que el hierro se liga mejor a la protoporfirina que el zinc. Parece que el hierro se inactiva como catalizador de reacciones de oxidación, ya que el jamón de Parma es muy estable a la oxidación (Skibsted, 2011). La cantidad de Zn-PP formada aumenta al disminuir el pH de la materia prima (Bou et al., 2020). Se ha demostrado que cuando se añade EDTA a sistemas modelos, se liga el Zn, no se produce Zn-protoporfirina IX pero sí se genera protoporfirina IX, por lo que no se produciría la substitución directa del Fe por el Zn, sino por la inserción del Zn a la protoporfirina IX, que se formaría de manera independiente (Wakamatsu et al., 2007).

Si se produce suficiente transformación de nitrato a nitrito, el interior del halo puede nitrificarse, y el halo queda matizado, por lo que constituye un problema de menor importancia. Si la cantidad de nitrito generada es superior a 10 microM se inhibe la formación de Zn-protoporfirina IX, y si es superior a 25 microM se inhibe significativamente la formación de protoporfirina IX (Wakamatsu et al., 2010). Por lo tanto, la peor de las situaciones se daría cuando se produjera la formación de pequeñas cantidades de nitrito a

Imagen 26c. Mancha oscura que rodea la zona sin nitrificar en jamón ibérico.

Imagen 26d. Halo externo producido por adición de pequeñas cantidades de nitrificantes.

 ${\bf Imagen~26e.~Halo~externo~producido~por~adici\'on~de~peque\~nas~cantidades} \\ {\bf de~nitrificantes.}$

partir de nitrato, suficientes para inhibir la formación de pigmentos rosados (ZnPPIX y PPIX), pero insuficientes para nitrificar el interior del halo con suficiente cantidad de nitrosilmioglobina. Por tanto, si se desea aumentar la formación de nitrosilmioglobina debería actuarse en las fases de reposo y secado, aumentando la a_w superficial para favorecer el crecimiento de la microbiota nitrato reductora capaz de transformar el nitrato a nitrito. Por otro lado, al final del frente de difusión de nitrito/óxido nítrico, las concentraciones son muy bajas y, en base a los resultados de

Wakamatsu *et al.* (2010), cuando la concentración esté entre 10 y 25 microM se debería inhibir la formación de Zn-protoporfirina IX, pero no la de la protoporfirina IX, lo cual podría justificar la zona de color más oscuro que precede a la parte más interna en la que predomina la Zn-protoporfirina, y que es muy visible en algunos jamones (**imagen 26c**)

Existen diversas causas tecnológicas que pueden generar halos:

- Insuficiente adición de nitrito para que pueda alcanzar el centro de la pieza.
- Un pH bajo de la carne favorece la reducción del nitrito a óxido nítrico. El óxido nítrico formado en la superficie puede perderse a la atmósfera, donde reacciona rápidamente con oxígeno formando NO₂ de color pardo, este reacciona con el agua y forma ácido nítrico (HNO₃), que se neutraliza a nitrato, y ácido nitroso que por acción de reductores de la carne como la mioglobina (Mb) puede reducirse a NO, el cual finalmente forma el color rojo de la nitrosilmioglobina (NO-Mb):

 $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$ $Mb + HNO_2 \rightarrow MetMb + NO + H_2O$ $NO + MetMb \rightarrow NO-MetMb$ $NO-MetMb \rightarrow NO-Mb$

Un pH elevado permite la difusión del nitrito dentro de la carne, produciéndose una transformación lenta a óxido nítrico dentro de la propia carne. Los músculos de pH bajo (e.g. SM y BF) son más susceptibles a presentar halos que otros de pH más elevado como el músculo aductor. Además, en el aductor la difusión del nitrito se ve favorecida ya que es paralela a las fibras (Gómez et al., 2017).

- Drenaje del nitrito añadido producido por la salmuera procedente de la parte superior de la pila, por el agua emitida por los humectadores o por el uso de una sal de salazón con un contenido excesivo de agua.
- Destrucción del nitrito añadido por reacción con ácidos o con el ascorbato/eritorbato. La reducción del nitrito se puede producir en parte en la mezcla de sales nitrificantes preparadas con antelación si la a_w de la mezcla es superior a 0,62 y/o hay presencia de reductores como ascorbato o isoascorbato.
- Distancia a recorrer elevada debido al tamaño y/o conformación del jamón (el prensado disminuye el halo).
- Disminución del coeficiente de difusión debido al uso de carne no totalmente descongelada.

 Mayor presencia de substancias reductoras en la carne.

Lo más común es que los halos sean debidos a un pH bajo de la carne, lo que favorece la descomposición del nitrito a óxido nítrico y su reacción en la zona más externa del pernil (Arnau et al., 2003b), lo cual debería tenerse en cuenta al validar la seguridad alimentaria de los procesos de curación. En un estudio realizado en el IRTA (n = 391) se observó que el 66% de los jamones con pH₂₄ < 5,6 en el músculo semimembranoso (pH₂₄SM) mostraban halos de nitrificación, mientras que tan sólo se observaba en un 10% de los jamones con pH₂₄SM > 5,6.

En los jamones con pH bajo (pH₂₄SM < 5,6), el nitrito tiene una mayor eficacia en la reducción de los recuentos de microorganismos, lo cual incluye a las bacterias con capacidad nitrato reductasa, por lo que la reducción de nitrato a nitrito por acción de dichas bacterias es de esperar que sea menor en jamones de pH bajo, especialmente en los procesos en que la humedad ambiental es baja. En estos casos, al no reducirse el nitrato a nitrito y al transformarse parte del nitrito a nitrato, existe cierto riesgo de superar los niveles máximos de nitrato residuales permitidos, por lo que es conveniente utilizar este tipo de materia prima para establecer las dosis máximas de nitrato residuales en cada proceso (Gratacós-Curbasí, *et al.*, 2013).

El contenido de nitrito en jamones de pH elevado es superior debido a su menor velocidad de reducción a óxido nítrico, por lo que en ellos no se observan halos internos.

El menor contenido de nitrato residual en los jamones de pH elevado que en los de pH bajo es debido a los mayores recuentos de bacterias con capacidad nitrato reductasa en las piezas de pH más elevado. Otros factores que contribuyen a generar heterogeneidad en el contenido residual de nitratos son:

- Los factores que afectan a la absorción: cantidad añadida, cantidad de salmuera generada (más elevada a pH bajo y en carnes previamente congeladas, por lo que se produce mayor drenaje y menos absorción de nitrato). La deshidratación superficial de la corteza y de la grasa dificulta su absorción.
- Los factores que afectan a la transformación de nitrito a nitrato, como por ejemplo la oxidación del óxido nítrico desprendido que en contacto con el

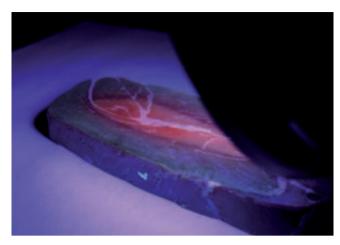


Imagen 27a. Superficie de jamón iluminada con luz UV. La zona rojiza corresponde a la zona no nitrificada (Zn-protoporfirina) y la oscura a la zona nitrificada. Jamón pH<5,5 tratado con nitrato y nitrito.

Imagen 27b. Jamón tratado con nitrato (con poca reducción a nitrito).

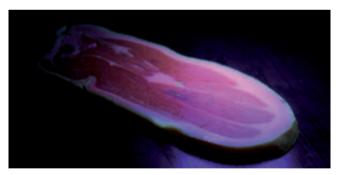


Imagen 27c. Jamón de Parma sin nitrificantes.

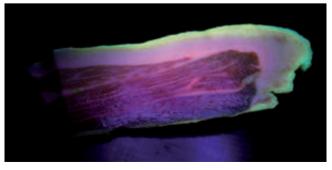


Imagen 27d. Jamón serrano sin nitrificantes.

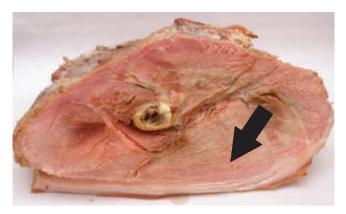


Imagen 28. Jamón curado cocido a media curación en el que se puede diferenciar la zona nitrificada de la que no lo está.

aire se oxida a NO₂ que después reacciona con agua para dar HNO₃, u otras reacciones que tienen lugar principalmente en la zona superficial del jamón, tales como:

MbFe(II) O_2 + NO + H₂O -> MbFe(III)H₂O + NO₃⁻ y MbFe(II)NO₂ + NO₂⁻ -> MbFe(II)NO + NO₃⁻.

 La concentración por secado, y la migración para equilibrar la relación NO₃-/agua, que hará que los músculos internos tiendan a tener más nitrato que los músculos externos.

En los jamones de corta curación, con pH bajo, no se produce un desarrollo adecuado del color en el interior, lo cual se observa tanto a simple vista (imagen 26b) como después de una cocción del jamón (imagen 28). Si se daña la estructura del jamón (e.g. mediante una sonda de temperatura) se produce una entrada de microorganismos, algunos de los cuales tienen capacidad nitrato reductasa; en estos casos puede producirse cierta transformación de nitrato a nitrito que forme coloraciones rojizas dentro del halo (imagen 29a, b).

Para evitar y/o reducir la formación de halos, existen diferentes posibilidades:

- No añadir nitrito, ya sea no usando nitrificantes o bien usar sólo nitrato.
- No utilizar jamones de pH < 5,6 en el músculo semimembranoso.
- Aumentar el pH superficial (e.g. con citrato trisódico), lo cual disminuye la reactividad del nitrito y la pérdida de NO.
- Aumentar la cantidad de nitrito, o reducir su drenaje hasta que se elimine el problema. La adición de nitrito en el segundo salado o al final del salado en pila (e.g. previo al prensado) disminuye su drenaje y facilita su difusión sin degradarse.

Imagen 29a. Inhibición de la formación de ZnPP(IX) por transformación de nitrato a nitrito u oxidación dentro del halo.



Imagen 29b. Inhibición de la formación de ZnPP(IX) por transformación de nitrato a nitrito u oxidación dentro del halo.

- Preparar las mezclas nitrificantes de forma que tengan una a_w < 0,62 y mantener los sacos que estén abiertos en un ambiente seco con HR < 62%.
- Establecer unas condiciones de humedad relativa durante el postsalado y primeras fases del secado que permitan el crecimiento de las bacterias con capacidad nitrato reductasa. En este sentido la adición de cultivos iniciadores podría ser de ayuda especialmente en los productos de corta curación. Es decir, hay que favorecer la transformación del nitrato a nitrito antes de que se hayan formado cantidades importantes de Zn-protoporfirina. De esta forma si bien el halo seguirá estando presente, quedará más matizado.

El color producido por la Zn-protoporfirina se puede distinguir del de la nitrosilmioglobina iluminando con luz ultravioleta (**imágenes 27a, b, c, d**).

Al cabo de un tiempo de mantener el jamón envasado, en algunos casos se produce una cierta reducción de la intensidad del halo de nitrificación debido a la homogeneización del contenido de humedad, a la formación de nitrosil-mioglobina en los jamones de corta curación y que están aún tiernos, y a la formación de Zn-protoporfirina en jamones de larga curación.

Halos externos

Se producen fundamentalmente en los jamones sin nitrificantes añadidos que se contaminan por una pequeña cantidad de nitrito (**imágenes 26d, e**), o en los que se añade tan solo nitrato y sufren un proceso de postsalado en unas condiciones muy secas (**imagen 27b**).

1.8.2 Coloraciones verdosas/ocres en el magro

Se trata de decoloraciones debidas a la oxidación del magro en zonas en las que se produce entrada de oxígeno (imagen 13f). Estas decoloraciones pueden ser debidas a varios factores, tales como a un pulido deficiente, a una insuficiente retracción de la piel, puntos de cala mal tapados, vasos hinchados, cortes y pinchazos en el codillo...

1.8.3 Irisaciones

Las irisaciones son tonalidades verdes y/o anaranjadas que se observan en la superficie de corte del jamón al incidir la luz en determinados ángulos (imágenes 30a, b). Un ángulo de corte con relación a la dirección de las fibras musculares inferior a 40 grados evita la aparición de la irisación (ver músculo aductor -Ad-, en imagen 30a), mientras que cuando el ángulo es de 90 grados (e.g. músculo semitendinosus, músculo SM imagen 30a) da lugar a la máxima irisación. A mayor contenido de grasa intramuscular menor es la irisación (en ibérico es menos frecuente). Este atributo se observa con frecuencia en la babilla, músculos semimembranosus (SM) y semitendinosus (ST) y es poco frecuente en el músculo biceps femoris (BF). Una elevada uniformidad en la superficie del producto da lugar a difracción de la luz, mientras que la alteración de la microestructura superficial refleja la luz de forma más irregular limitando las irisaciones;

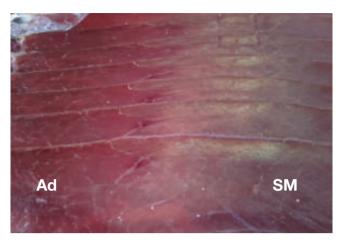


Imagen 30a. Irisaciones.

Imagen 30b. Irisaciones.

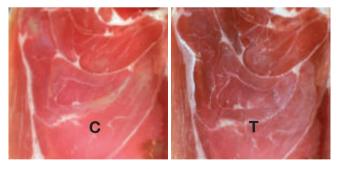


Imagen 30c. Disminución de la intensidad de irisaciones al aumentar la proteólisis (C=control, T=tratado con papaína 24h).

así por ejemplo, el problema aumenta al aplicar un tratamiento térmico, por altas presiones o envasar al vacío. En el envasado en atmósfera modificada el problema es menor debido al efecto de descompactación producido al descongelar los cristales de hielo. Un loncheado fino puede ayudar a reducir su percepción y una proteólisis elevada disminuye la incidencia de irisaciones (imagen 30c).

Imagen 31a. Brillo ocasionado por la fusión de grasa debido a la rotura de los adipocitos.

Imagen 31b. Brillo ocasionado por la fusión de grasa debido a la rotura de los adipocitos.

1.8.4 Brillo del corte

Se pueden distinguir dos tipos de brillo:

- El brillo provocado por la formación de una capa superficial de grasa debido al arrastre de la misma que se produce al cortar, por la rotura de los adipocitos debido a las tensiones producidas sobre la grasa por la retracción del magro o a la deshidratación de las paredes de los adipocitos si la a_w < 0,75 (**imágenes 31a, b**). En este caso no se considera un defecto, sino un atributo deseable, ya que le da melosidad y jugosidad al jamón.
- El brillo producido por el estado de las proteínas.
 Los jamones con pH elevado (imagen 32), los que han sufrido una elevada proteólisis (imagen 33) y los que contienen poca sal o han sufrido un secado insuficiente presentan un brillo superior, probable-

Imagen 32. Brillo debido a un pH elevado de la carne (zona húmeda) v encostrado (zona seca).

Imagen 33. Brillo debido a una proteólisis elevada.

mente debido a la mayor funcionalidad y menor desnaturalización de las proteínas. Este tipo de brillo se diferencia del producido por la fusión de la grasa en que, al raspar con un cuchillo afilado la superficie de corte, en lugar de disminuir el brillo, lo aumenta. Normalmente los jamones que poseen un brillo elevado, producido por el estado de las proteínas, suelen ser más adhesivos, generan una saliva más viscosa y pueden ser más pastosos. Arnau et al. (1997) observaron una intensidad de brillo superior en el músculo BF en jamones de 6 meses de curación que fueron sometidos a 30 °C durante el último mes que en los que fueron sometidos a 20 °C o 25 °C. Por otra parte, Sánchez-Molinero & Arnau (2014) encontraron un brillo mayor en el músculo BF en jamones sometidos a 35 °C durante 4 días, a los 234 días de secado, que en los que estuvieron a 24-26 °C.

Imagen 34a. Pintas blancas.

1.8.5 Color insuficientemente desarrollado en jamones sin nitrificantes

El desarrollo del color en jamones sin nitrificantes se produce por la formación paulatina del pigmento Zn-protoporfirina IX (ZnPP) (Wakamatsu *et al.*, 2004). La Zn-PP se forma en dos pasos: el primero por desmetalización del hierro atribuido a la acción del enzima ferroquelatasa (más activo a pH bajo del jamón) y el segundo por integración del Zn al grupo hemo. Aunque también se ha postulado una ruta adicional no enzimática (Becker *et al.*, 2012; Parolari *et al.*, 2016). El hierro extraido del grupo hemo se transforma en hidróxido de hierro (III) que precipita, y por tanto se inactiva. La reacción de transmetalización se estimularía por la proteólisis parcial de la globina y por la lipólisis (Bou *et al.*, 2020) y es inhibida por la presencia de nitrito y oxígeno (Wakamatsu, 2007).

Un pH bajo de la materia prima, una baja concentración de nitrificantes (procedentes de la materia prima, agua e ingredientes), un aumento de la temperatura de secado y del tiempo de curación total facilitan el desarrollo del color cuando no se añaden nitrificantes de forma intencionada. Sin embargo, se ha considerado que puede existir una cierta cantidad de nitrito y nitrato natural, no añadidos de forma intencionada, que pueden afectar al desarrollo del color, cuyo umbral se ha propuesto que sea, en el jamón de San Danielle, de 4 mg/kg para el nitrito y de 22 mg/kg para el nitrato (lacumin et al., 2019). Ello podría hacer que el color de algunos jamones sin nitrificantes, en función del proceso sufrido, no sólo fuera debido a la zinc-protoporfirina IX y al grupo hemo, sino que en determinadas zonas tuviese cierta contribución la

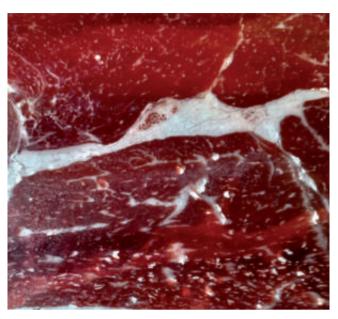


Imagen 34b. Jamón con numerosas pintas de distintos tamaños.

nitrosilmioglobina, en función del contenido de nitrito presente en la materia prima o generado durante el proceso. Por otro lado, dado que tal como se ha mencionado en el apartado 1.8.1, pequeñas concentraciones de nitrito, principalmente procedente de la reducción del nitrato, son suficientes para inhibir la formación de la ZnPPIX y de la PPIX, parece aconsejable disminuir de forma importante la a_w superficial durante el reposo y primeras fases del secado, para disminuir el crecimiento de microbiota con capacidad nitrato reductasa que facilita la formación de nitrito a partir del nitrato y daña el desarrollo de la ZnPPIX.

La ZnPPIX es más lipofílica (soluble en grasa) que la nitrosilmioglobina (Parolari et al., 2003), y esta puede transferirse del magro a la grasa durante el procesado. De hecho, se ha observado que el contenido en la grasa intermuscular es superior al de la grasa subcutánea (Wakamatsu et al., 2006). En la imagen 27c se observa coloración rojiza, correspondiente a la presencia de ZnPPIX tanto en la grasa subcutánea como en la intermuscular, mientras que en las imágenes 27a y 27b tan solo se observa en la grasa intermuscular correspondiente a la zona no nitrificada.

1.9 Precipitados

1.9.1 Pintas blancas y velo blanco de tirosina

Las pintas blancas (**imágenes 34a, b, c**) y el velo blanco (**imagen 35a**) son dos fenómenos de preci-

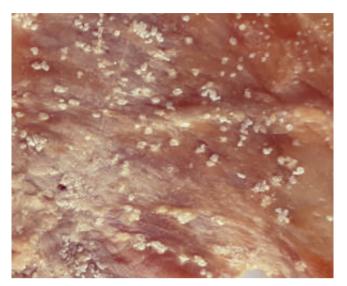


Imagen 34c. Pintas en la superficie de un jamón envasado al vacío.

Imagen 34d. Pintas en la superfície del fémur.

pitación que se observan con mucha frecuencia en jamones curados. Mientras que el velo blanco se ha considerado siempre un problema, las pintas blancas, especialmente si son grandes y están presentes en un número reducido, se pueden incluso considerar un indicador de calidad, ya que se presentan especialmente en aquellos jamones sometidos a un proceso de larga maduración. Ambos fenómenos están formados mayoritariamente por precipitados de tirosina, y en menor medida por fenilalanina (Arnau et al., 1987a; Arnau et al., 1996; Butz et al., 1974). Si la concentración de aminoácidos libres es muy elevada, cuando el contenido de agua se reduce de forma considerable, otros aminoácidos poco solubles distintos de la tirosina pueden cristalizar (imagen 34b). Se han publicado varias hipótesis sobre el origen de la tirosina en el jamón curado (Comi et al., 1981; 1982; 1983; Silla et al., 1985). A pesar de que la presencia de tirosina en algunos alimentos se atribuye a un origen microbiano, en el jamón curado los recuentos microbianos son demasiado bajos para justificar dicha hipótesis (Carrascosa et al., 1988; 1992; Francisco et al., 1981; Huerta, 1986; Molina et al., 1989, 1990). Además, estos recuentos son aún menores en el interior del jamón, que es precisamente donde la precipitación de tirosina es más frecuente. Los estudios que describen a los enzimas proteolíticos musculares como responsables de la formación de los aminoácidos libres (Maggi et al., 1977; Melo et al., 1974; Sárraga et al., 1989; 1993; Toldrà, 2006; Toldrà & Etherington, 1988) ofrecen una explicación más

satisfactoria sobre el origen de la tirosina libre en el interior del jamón.

La presencia de cristales de tirosina en la superficie de jamones envasados al vacío (imagen 34c), debajo del hueso coxal o en grietas (e.g. músculo aductor) se puede explicar, en parte, por la actividad de las proteasas fúngicas. Las bandas de pintas/velo blanco aparecen cuando se produce un corte en el jamón curado y se envasa (imagen 36a). Alrededor de las pintas (imagen 35b) y cortes producidos al deshuesar (imagen 35d) no se forma velo blanco ya que aglutinan la tirosina que está a su alrededor y disminuye en esta zona la concentración de tirosina.

La actividad de los enzimas proteolíticos está afectada por la concentración de sal (Sárraga et al., 1989) y por la temperatura (Parolari et al., 1988; Rico et al., 1990; Virgili et al., 1995), lo cual podría explicar el aumento de velo blanco y la incidencia de jamones con pintas blancas observada por Arnau et al. (1997a) al disminuir la cantidad de sal o aumentar la temperatura de secado. Por otra parte, la concentración de tirosina es inferior cuando se usa una materia prima de pH elevado (Arnau et al., 1994) o unos jamones poco conformados (Guerrero et al., 1996). El contenido de tirosina (expresado en base seca o referido a proteína total) aumenta con el tiempo, aunque en algunos estudios se observa una disminución (Ruiz et al., 1999), o estabilización (Sforza et al., 2006) en etapas avanzadas en procesos muy largos. Sin embargo, debe tenerse en cuenta que desde el punto de vista de la formación de precipitados la relación

Imagen 35a. Velo blanco.

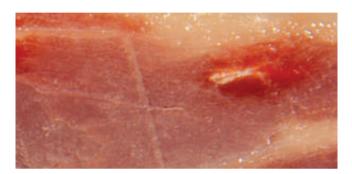


Imagen 35b. Ausencia de velo blanco alrededor de una pinta.

tirosina/agua es la que realmente importa. En base a datos publicados (Virgili et al., 2007; Jurado et al., 2007; Flores et al., 1997a; Pérez-Santaescolástica et al., 2018), el agua del jamón es una solución sobresaturada de tirosina y se encuentra en un estado termodinámicamente inestable.

La formación de pintas y velo blanco depende no sólo de la concentración de tirosina, sino también de otros factores que afectan a la solubilidad, a la nucleación y al crecimiento cristalino de la tirosina.

La solubilidad de la tirosina en el jamón depende del pH, ya que la tirosina tiene un mínimo de solubilidad cuando el valor de pH es 5,63, el cual corresponde a su punto isoeléctrico. La solubilidad de la tirosina aumenta con la temperatura (0,02% a 0 °C, 0,027% a 10 °C, 0,038% a 20 °C, 0,054 a 30 °C, 0,075% a 40 °C), con lo cual se facilita la formación de velo blanco en la superficie de corte al disminuir la temperatura de almacenamiento del producto cortado (Arnau et al., 1994), y a medida que aumenta la relación sal/agua disminuye la solubilidad de la tirosina. Por otra parte, hay que tener en cuenta que la formación de precipitados implica en primer lugar un proceso de nucleación primaria mayoritariamente heterogénea y después un proceso de crecimiento cristalino. El uso de perniles que han sido previamente congelados/descongelados antes de

Imagen 35c. Velo blanco sobre el tejido conjuntivo de la superfície de corte.

Imagen 35d. Ausencia de velo blanco alrededor de los cortes producidos en el deshuesado.

la salazón, facilita la formación de pintas blancas en el magro, grasa y huesos (imagen 34d) (ya que la rotura de fibras facilita especialmente la nucleación, y en menor medida la difusión) y disminuye la intensidad del velo blanco, ya que el contenido de tirosina alrededor de las pintas disminuye. Cuando los jamones curados se congelan durante 2-3 semanas como piezas enteras se forman multitud de pequeñas pintas en su interior, y se evita el velo blanco en los casos en que la concentración de tirosina es muy elevada o se produce una cierta disminución del velo blanco cuando el contenido es moderado (imágenes 37a, b). Cuanto más baja es la temperatura de congelación mayor es el número de pequeños cristales formados y mayor es el efecto preventivo de formación del velo blanco. Un almacenamiento posterior a temperaturas cercanas al punto de congelación del jamón favorece el crecimiento cristalino de las pintas y reduce la formación del velo blanco. Si en lugar de congelar los jamones enteros, se congelan en forma de trozos o lonchas no se elimina el problema del velo blanco, sino que tiende a aumentar (Arnau, 1991).

Imagen 36a. Bandas de velo blanco/pintas debidos a un corte producido durante el deshuesado.

Imagen 36b. Bandas de velo blanco/pintas entre músculos debidas a tensiones durante el secado.

La congelación durante el proceso también puede ser útil para disminuir el velo blanco, ya que los daños estructurales producidos por los cristales de hielo generan microcortes que favorecen la nucleación y el crecimiento de los cristales de tirosina.

En los jamones que no han sido previamente congelados parece que la nucleación es la etapa crítica que condiciona la formación de pintas blancas (nucleación homogénea), puesto que cuando la concentración de tirosina en el músculo es elevada, se observa la formación de velo blanco en pocas horas o incluso en pocos minutos. El velo blanco se forma probablemente por un proceso de nucleación heterogénea en el que las irregularidades de la superficie de corte actúan como lugares de nucleación (imagen 35c), donde precipita posteriormente la tirosina que difunde del interior del jamón. Es decir, dichas irregularidades disminuyen la energía libre necesaria para formar los núcleos críticos.

En el loncheado mecánico, el corte de las pintas puede esparcir pequeñas cantidades de tirosina so-

Imagen 37a. Velo blanco en jamón refrigerado, que se elimina si previamente la pieza entera se ha congelado a -20 °C ó -65 °C (jamones con elevada concentración de tirosina).

Imagen 37b. Formación de numerosas pintas blancas de pequeño tamaño al congelar un jamón al final del proceso.

Imagen 37c. Corte de pintas induce velo blanco.

Imagen 38. Eliminación de velo blanco debido a la aplicación de substancias adherentes.

bre la superficie de corte, que actúan como núcleos de cristalización que aumentan la formación del velo blanco (**imagen 37c**) a través de un mecanismo de nucleación heterogénea secundaria. El uso de atmósfera protectora con CO₂, nieve carbónica para la congelación o la limpieza criogénica con CO₂ reduce el pH del jamón y lo acerca al punto isoeléctrico, con lo que se favorece la cristalización en forma de velo blanco o pintas.

En los productos loncheados, el corte ultrafino disminuye la incidencia de velo blanco debido a la mayor superficie disponible para precipitar. Por otra parte, durante el loncheado, las cuchillas que presenten ranuras facilitan la formación de velo blanco en superficie, por lo que se recomienda que estén bien afiladas. La aplicación de substancias adherentes a la superficie de corte (e.g. acetato de polivinilo o gelatina) (Arnau et al., 1987a) (imagen 38) o materiales de envasado adherentes (Frigola & Ayuso, 2004) disminuye o elimina el velo blanco. El uso de films o substancias que tuvieran pequeños cristales de tirosina adheridos facilitaría la cristalización de la tirosina en ellos en lugar de la superficie de corte y podría eliminar/disminuir el problema del velo blanco.

Como puede observarse, el control de la formación de estos precipitados requiere un buen conocimiento de la materia prima y del proceso de maduración y de envasado. Debe tenerse en cuenta que aparte de la tirosina y la fenilalanina, existen otras substancias poco solubles presentes de forma natural en el jamón, como por ejemplo la creatina y la hipoxantina, que a bajas temperaturas pueden precipitar en la superfície de corte y dar un ligero velo blanco en las zonas más secas (ver apartado 1.9.4).

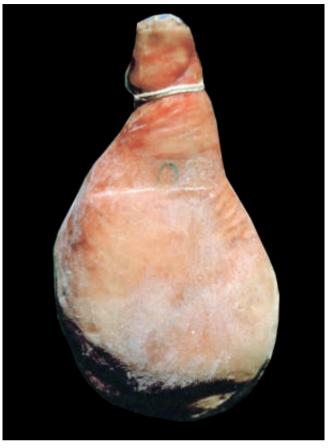


Imagen 39a. Precipitado de fosfato en la piel.

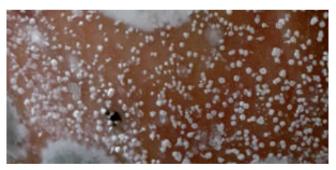


Imagen 39b. Precipitado de fosfato en la piel a HR muy elevada.

1.9.2 Precipitados de fosfato

La formación de precipitados de fosfato (Na₂HPO₄) (**imágenes 39a, b, 40a, b**) se observa cuando el jamón se almacena a baja temperatura, y está favorecida por un pH elevado y una elevada relación sodio/agua y fosfato/agua (Arnau *et al.,* 1993; Arnau *et al.,* 1997b). El contenido de fosfato tiene cierta variabilidad en la propia materia prima, y las relaciones sal/agua y fosfato/agua aumentan a medida que el jamón se va secando, por lo que para reducir este problema, se debe evitar que los jamones alcancen una merma excesiva.

Imagen 40a. Precipitados de fosfato en el magro.

Imagen 40b. Precipitados de fosfato en el magro.

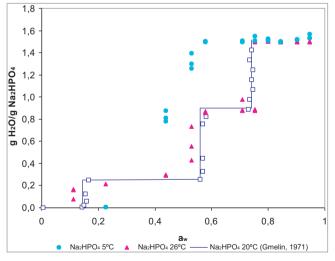


Imagen 40c. Isotermas del $\mathrm{Na_2HPO_4}$ a 5, 20 y 26°C.

En jamón curado se han encontrado dos hidratos: Na₂HPO₄·7H₂O y Na₂HPO₄·12H₂O. Estos cristales se producen a partir del fosfato presente en la carne de forma natural, y se confunden a menudo con cristales

de sal común. Sin embargo, su sabor es fresco, ligeramente salino pero distinto del de la sal común, y su aspecto es distinto. En otros alimentos (e.g. atún en lata) se ha descrito la presencia de struvita (MgNH₄PO₄·6H₂O) (Van Wazer, 1971), que, si bien no se ha descrito en jamón, podría estar presente cuando se forma remelo, ya que entonces aumenta el contenido de nitrógeno básico volátil y Mg₂+ en la superficie. La relación fosfato/proteína del jamón disminuye durante el proceso, especialmente en el salado, debido a la pérdida en la salmuera exudada, y durante el reposo por cristalización en el exterior, especialmente en el codillo (Arnau et al., 1993). A medida que transcurre el proceso, la relación fosfato/agua aumenta, especialmente en las partes más externas. Durante el reposo es frecuente observar la formación de cristales en la piel del jamón en forma de pelusilla (imagen 39a) debido a su pH elevado y a su alto contenido en sal. En los músculos superficiales más susceptibles a presentar un pH elevado (M. gracilis, M. aductor...) y en los jamones de pH elevado se observa la precipitación durante el reposo confiriéndoles un aspecto granuloso, mientras que en los músculos o jamones de pH bajo no hay precipitación y su aspecto es liso. Durante el reposo la precipitación en el exterior del producto aumenta si se baja la temperatura ambiental y se aumenta la humedad relativa, por lo que disminuye el fosfato en el interior del producto. Esto es debido a que un aumento de HR hace aumentar el pH superficial y facilita la migración del fosfato del interior a la superficie (tanto en el magro como en la piel) y la formación de cristales grandes (por recristalización) (imagen 39b), mientras que a valores de HR bajos, cercanos al punto de saturación del NaH₂PO₄, el menor contenido de agua dificulta la difusión del fosfato y por tanto el crecimiento cristalino. Al final del proceso, el lavado con agua caliente facilita la eliminación del fosfato en la zona superficial, y el mantener el producto final durante poco tiempo en refrigeración disminuye el riesgo de formación de precipitados de fosfato (Arnau, 1991).

En los productos loncheados la disminución brusca de la temperatura que genere condensación de agua en el interior del envase puede favorecer la formación de cristales de fosfato.

Cuando el jamón está curado, dichos cristales se pueden observar en la superficie de corte, especialmente cuando se almacena en refrigeración, y confieren al masticar una textura crujiente similar a la

Imagen 41a. Precipitados de sal.

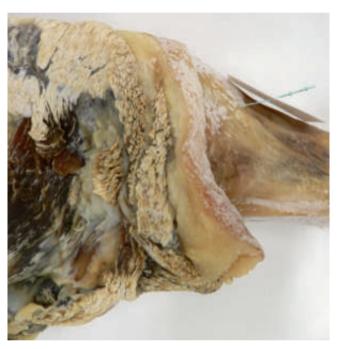


Imagen 41b. Precipitados de sal.

que se esperaría si hubiera presencia de cristales de hielo. Si el producto está envasado al vacío, al pasar de temperatura de refrigeración a temperatura ambiental los cristales se disuelven en el agua de hidratación. El uso de nieve carbónica para la congelación, limpieza criogénica y atmósfera modificada que contenga CO₂, disminuye el pH del jamón y frena ligeramente su formación, pero podría aumentar la formación de velo blanco en aquellos músculos que tuvieran un pH > 5,7.

El pH de una solución al 1% de estos cristales es de 8,6, lo que indica que al formarse generan una ligera acidificación a su alrededor, que podría hacer aumentar ligeramente el velo blanco. Sin embargo, se ha observado que la formación de cristales de fosfato, a pesar de que puede generar daños es-

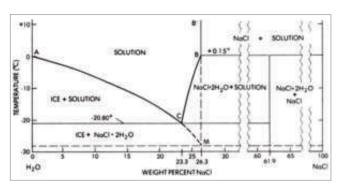


Imagen 41c. Diagrama de fases NaCl-H₂O.

tructurales, no parece favorecer la formación de pintas blancas. Los cristales de fosfato producen corrosión del papel de aluminio debido a su elevado pH local, por lo que no es recomendable su uso cuando el producto curado se almacena en refrigeración. Algunas mezclas de sales nitrificantes contienen fosfatos como agentes estabilizantes, pero su contribución es poco importante. La adición de dextrosa suele frenar ligeramente su formación debido a la disminución del pH superficial.

En la isoterma de sorción del Na₂HPO₄ a 20 °C (imagen 40c) se observan distintos puntos de ruptura a valores de actividad de agua (aw) de 0,15, 0,56 y 0,74 correspondientes a la descomposición de los hidratos, Na₂HPO₄·2H₂O, Na₂HPO₄·7H₂O y Na₂HPO₄·12H₂O (Gmelin, 1971), lo cual puede actuar de barrera al intercambio de agua entre la superficie de la carne y el aire, y afectar a la cinética de secado de aquellos jamones que los tengan (e.g. jamones con remelo), ya que los hidratos no varían su contenido de humedad hasta alcanzar la aw correspondiente al siguiente hidrato, lo cual varía con la temperatura. Cuando dicha a_w se alcanza se produce un cambio importante en el contenido de agua con una pequeña disminución de la HR ambiental. La dificultad de secado en los jamones con remelo es más evidente cuando T < 5 °C, ya que existe un efecto importante de la temperatura en las isotermas de sorción de carne y carne salada con Na₂HPO₄ que produce un desplazamiento de los puntos de ruptura a valores más bajos que a 20 °C o 26 °C (Comaposada et al., 2002).

1.9.3 Precipitados de sal

La cristalización de cloruro sódico tiene lugar cuando se produce un secado muy rápido de la superficie del jamón hasta valores de actividad de agua inferiores a 0,75 (Comaposada *et al.*, 2000), lo cual se

Imagen 42. Aspecto blanco de la piel producido por cristalización de sal en su interior.

observa con frecuencia en aquellas zonas que quedan aisladas anatómicamente (**imágenes 41a, b**). La pata y la piel son especialmente sensibles, ya que la sal que contienen migra lentamente hacia el interior. Un secado rápido puede facilitar la cristalización de sal y conferir un aspecto blanquecino a la superficie de la piel (**imagen 42**). Ocasionalmente puede observarse la precipitación de impurezas que contiene la sal (e.g. CaSO₄·2H₂O). Estas pueden ser eliminadas en su mayoría si se efectúa un lavado, que es más efectivo para este fin si la temperatura del agua es cercana a los 50 °C, ya que es la que da máxima solubilidad al CaSO₄·2H₂O.

A altas concentraciones de sal y temperatura inferior a +0.1 °C, la sal tiende a cristalizar como NaCl·2H₂O si hay suficiente humedad disponible (**imagen 41c**). Cuando el contenido de agua de la mezcla salina es superior al 38% se produce una mezcla salmuera saturada/NaCl·2H₂O, y si es inferior se produce una mezcla NaCl·2H₂O/NaCl.

Cuando se almacena el jamón a HR > 75%, se suele observar un aspecto mojado de la pata del jamón u otras zonas con elevada relación sal/agua y exudación de salmuera procedente de la hidratación de la sal (**imágenes 43a, b, c**). Al cabo de un tiempo de permanencia a HR > 75 se pueden observar colonias de microorganismos halófilos en la zona hidratada (**imagen 43d, e**) que pueden generar olores desagradables.

1.9.4 Precipitados de creatina

En chorizos y salamis curados es muy frecuente la presencia de precipitados de creatina monohidrato (Arnau *et al.*, 2002), la cual también puede observarse ocasionalmente bien sea en forma de velo blanco ligero en jamones curados magros envasa-

Imagen 43a. Formación de salmuera debido a la hidratación de zonas con alta relación sal/agua.

Imagen 43b. Formación de salmuera debido a la hidratación de zonas con alta relación sal/agua.

dos al vacío o en atmósfera modificada o bien en forma de pintas en la superficie de corte o en el exterior del producto (**imagen 44**). El contenido de creatina en la carne de cerdo suele estar alrededor del 0,4%, y es superior en los músculos blancos (más glucolíticos) que en los músculos rojos (Mora et al., 2008). Se ha observado que el contenido de creatina en el músculo semimembranoso disminuye desde el final del postsalado hasta los 7 meses, pro-

Imagen 43c. Formación de salmuera debido a la hidratación de zonas con alta relación sal/agua.

Imagen 43d. Crecimiento de microorganismos halófilos sobre la piel hidratada y con alto contenido en sal.

Imagen 43e. Crecimiento de microorganismos halófilos sobre una zona de piel hidratada y con alto contenido en sal.

duciéndose un aumento del contenido de creatinina. A partir de los 7 meses no se ha observado cambio significativo de ambas substancias (Mora *et al.*, 2010).

Imagen 44. Precipitados de creatina.

La creatina es un compuesto presente de forma natural en la carne. Se sintetiza en el hígado, en el páncreas y en los riñones a partir de la arginina, la glicina y la metionina. La creatina se convierte en creatinina hasta los 9 meses aproximadamente (Escudero et al., 2011), y tiene lugar de forma más rápida a pH bajo y a temperatura elevada. La administración de ácido guanidinoacético al animal aumenta el contenido de creatina en el músculo (Li et al., 2018). Durante el secado la concentración de creatina aumenta hasta alcanzar concentraciones superiores a su solubilidad en fase acuosa. Dicha solubilidad depende de la temperatura (2,36 g/100 g de solución a 36 °C, 1,35 a 20 °C, 0,88 a 10 °C y 0,54 a 0,5 °C). Por tanto, es de esperar que se produzca su precipitación, especialmente en las partes más secas, cuando el jamón curado se almacena a temperatura de refrigeración. Cuando la a_w > 0,4 está en forma de monohidrato de creatina. El encostrado y las variaciones importantes de la temperatura de almacenamiento facilitan la formación de cristales de creatina. La creatina cristalizada es estable a a_w < 0,90, pero cuando está en solución lo es menos, especialmente a temperatura y actividad de agua elevadas (Uzzan, et al., 2009).

1.9.5 Hipoxantina

Después del sacrificio el ATP se convierte rápidamente en adenosin difosfato (ADP) y adenosin monofosfato (AMP) que se transforma en inosin 5'-monofosfato (IMP). Este paulatinamente pasa a inosina, que se degrada a hipoxantina por acción autolítica o microbiana (Hernández-Cázares et al., 2011). El contenido de hipoxantina en el jamón curado (Clariana et al., 2010; Escudero et al., 2011) es superior

Imagen 45. Cristales de grasa.

a su solubilidad en agua (0,7 g/l a 23 °C), por lo que puede precipitar especialmente en aquellas partes del jamón que sean más secas y formar un velo blanco muy ligero conjuntamente con la creatina.

1.9.6 Cristales de grasa

La grasa de fusión de la superficie de los productos loncheados puede cristalizar a baja temperatura (imagen 45). Estos cristales se distinguen claramente de los de tirosina, ya que funden al aumentar la temperatura.

1.10 Exudado en jamón envasado

1.10.1 Exudado acuoso en piezas enteras

Se produce después de envasar una pieza de jamón al vacío, cuando se almacena a una temperatura baja, de forma que en las zonas donde el envase no hace contacto con el jamón se produce condensación de agua en su interior (**imágenes 46a, b**). Para evitar este problema es recomendable mejorar el contacto envase-producto o mantener el producto unas horas a temperatura ambiente de forma que

Imagen 46a. Exudado acuoso en jamón: jamón envasado al vacío.

Imagen 46b. Exudado acuoso en jamón: jamón envasado al vacío.

este espacio sea ocupado por grasa líquida procedente del tejido subcutáneo.

1.10.2 Exudado acuoso en jamón loncheado envasado en atmósfera protectora

En los lineales de los puntos de venta, las bandejas de jamón suelen estar sometidas a una iluminación que puede aumentar la temperatura del envase y del producto en contacto con él. Al mismo tiempo, la otra cara de la bandeja se ve sometida a una corriente de aire que enfría el envase, con lo cual se produce un secado del jamón en la zona caliente y una condensación de agua en la superficie fría del envase (**imágenes 46c, d**).

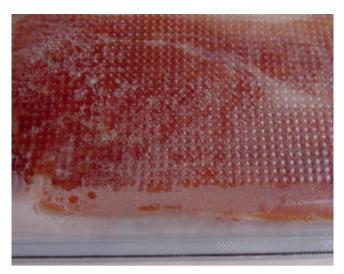


Imagen 46c. Condensación de agua en loncheado envasado en atmósfera protectora.

Por otra parte, para visualizar mejor el envase, se colocan algunos de ellos en posición vertical, y en consecuencia se produce un drenaje, hacia el fondo del envase, del agua que ha condensado (imagen 46d). Con este proceso, se secan las puntas y las lonchas más finas de las zonas más calientes o de mayor espacio de cabeza, con lo cual, por un lado aumenta el sabor salado y por otro disminuye la estabilidad microbiológica de la zona inferior en contacto con el agua de drenaje, especialmente si tiene lugar un abuso de temperatura. Por otra parte, cuanto mejor se adapte la forma de las lonchas a la forma del envase, menor importancia tendrá la condensación en las paredes del envase.

Por lo tanto, para mantener mejor la calidad del producto es conveniente reducir el espacio de cabeza, conseguir una buena adaptación entre la forma de las lonchas y la del envase, y mantener el envase en posición horizontal y a una temperatura homogénea. Para ello, se deben alejar los focos de luz del producto y utilizar lineales cerrables, o en el caso de lineales abiertos, colocarlos en zonas donde apenas haya circulación de aire externo.

1.10.3 Exudado de grasa en piezas enteras

El exudado de la grasa en pequeña cantidad es común especialmente en el jamón graso con corte V a temperatura elevada y/o cuando la HR < 75%, y se considera que contribuye a conferir el aroma añejo típico de los jamones curados españoles (Arnau et al., 2006) (imágenes 31b, 46e) al impregnar la superficie del magro y facilitar la oxidación de la

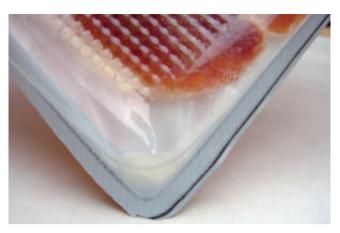


Imagen 46d. Exudado acuoso debido a condensación en loncheado envasado en atmósfera protectora.

grasa subcutánea. Si la HR es inferior al 75% durante el reposo, aumenta el exudado de grasa, mientras que si la HR es elevada pueden crecer microorganismos que reduzcan o eliminen el aspecto brillante y se puede facilitar la saponificación de la grasa (Arnau et al., 2003a). El exudado se produce en mayor cuantía en los jamones que poseen un elevado contenido en ácido linoleico. Si la grasa es muy insaturada y funde en la fase de salazón se podría producir un embarrado de la sal que podría dificultar el proceso de salazón cuando dicha sal se reutilizara.

1.10.4 Exudado de grasa en piezas envasadas al vacío

Se produce después de envasar una pieza de jamón al vacío cuando se almacena a temperatura ambiente, de forma que en las zonas donde el envase no está en contacto con el jamón, el vacío succiona la grasa fundida y no se produce condensación de agua (**imagen 46f**).

1.10.5 Líquido superficial en lonchas envasadas al vacío

En jamón loncheado envasado al vacío durante mucho tiempo, se observa en ocasiones formación de limo en las zonas de contacto entre lonchas (**imagen 46g**), lo cual se puede evitar reduciendo tiempos de vida útil, disminuyendo la a_w y almacenando a baja temperatura.

1.11 Pérdida de vacío/gas

La pérdida de vacío, o de gas en productos en atmósfera protectora, puede deberse a la existencia de fugas. Las causas pueden ser:



Imagen 46e. Fusión de grasa que empapa el magro superficial.

- Soldadura deficiente: producida por presencia de suciedad en la zona de soldadura, arrugas, temperatura de soldado no adecuada, problemas de mantenimiento de las bandas de soldadura...
- Presencia de elementos punzantes en el producto o en la línea de envasado. El efecto punzante de la pezuña, en las piezas envasadas al vacío, se puede reducir incorporando una pequeña bolsa protectora adicional en dicha zona.
- Velocidad de la línea elevada y cantidad de gas inyectada excesiva (posible daño a la soldadura), o insuficiente (a menor contenido de gas es más difícil que los equipos detecten las fugas).

La pérdida de vacío se puede deber también a la formación de gas, que es común en los jamones con actividad de agua alta, especialmente cuando se almacenan sin refrigeración, debido al crecimiento de bacterias formadoras de gas. El tratamiento por alta presión reduce la incidencia de piezas con formación de gas.

1.12 Exceso de grasa intramuscular

En general, se considera que para productos de larga curación un contenido elevado de grasa intramuscular tiene un impacto positivo en la terneza y jugosidad. Además, la grasa intramuscular es un buen disolvente de los aromas, lo cual le confiere un aroma más intenso y persistente (Ventanas et al., 2007). La grasa intramuscular es claramente visible a partir del 5% (Buscailhon y Monin, 1994), y se considera un problema cuando el contenido es excesivo. El exceso de grasa intramuscular (denominado esteatosis muscular) se observa (**imágenes 47a, b**) especialmente en el mús-

Imagen 46f. Fusión de grasa.

Imagen 46g. Limo en jamón envasado al vacío.

Imagen 47a. Esteatosis muscular.

Imagen 47b. Esteatosis muscular.

culo semitendinoso y es menos problemático en la babilla y el jarrete. La esteatosis se observa de forma tardía en la fase de crecimiento de los cerdos (después de 50 kg peso vivo) y se intensifica con la edad. Los datos obtenidos conducen a pensar que el origen más probable es de origen genético, pero existe un efecto de la alimentación y cría; por tanto, el problema se agrava en la producción de cerdos grasos. Los jamones afectados por esteatosis presentan más esteárico y menos linoleico que los que no lo están. Mediante sondas genéticas se podrían identificar los animales portadores (Palin et al., 2002; 2003; 2005).

1.13 Coquera

1.13.1 Coquera coxofemoral

Se entiende por coquera la alteración que se caracteriza por la formación de grietas, huecos o cavidades en el interior de la masa muscular durante la fase de secado en la que se observa tejido desestructurado y con frecuencia un limo adherente de color marrón y maloliente cubriendo las paredes de la oquedad. En otras ocasiones se observa un aspecto seco, similar al serrín, debido a una deshidratación excesiva (imágenes 48a, b, c). Es frecuente también la presencia de acúmulos de ácaros (Arnau, 2011) (imagen 49). Si el proceso se extiende puede afectar a los espacios intermusculares adyacentes (e.g. entre aductor y semimembranosus).

Imagen 48a. Jamón con coquera.

Imagen 48b. Jamón con coquera.

Imagen 48c. Coquera entre los músculos semimembranoso y aductor.

Imagen 48d. Diferencia en la retracción de un jamón con corte en V y uno con piel.

Imagen 49. Acúmulos de ácaros.

Entre las causas que generan esta alteración o que la afectan se han citado las siguientes:

- El músculo aductor es uno de los más magros del jamón, de fibras gruesas unidas laxamente y perpendiculares al plano superficial, lo cual favorece el secado. Cuando está desprovisto de epimisio (imagen 5d) se favorece el agrietado (Olmos-Llorente, 2006) y el crecimiento de mohos en su interior
- La zona del músculo aductor y entorno posee una

elevada relación superficie de evaporación/masa cárnica, que facilita el encostrado y dificulta la retracción de la superficie del jamón (Hugas & Arnau, 1987b; Olmos-Llorente, 2006). Por otra parte, el hueso dificulta la retracción de la musculatura y puede facilitar la formación de cavidades. En dichas cavidades se desarrollan olores desagradables a bodega húmeda que pueden transmitirse a los músculos advacentes debido al crecimiento de cocos gram (+) catalasa (+) (Hugas & Arnau, 1987b), de bacterias halotolerantes (Serra et al., 2007), y de mohos, lo cual se agrava cuando se produce la colonización por ácaros (Sánchez-Molinero et al., 2010). Estos ácaros se alimentan de los mohos y de los propios tejidos del jamón, liberando los detritus de su metabolismo que, junto con la descomposición de los cadáveres de ácaros originan el olor característico de la coquera (Fulladosa et al., 2010).

- Las coqueras y desgarros son más pronunciados en jamones procedentes de aquellas líneas genéticas conformadas y magras (Gou et al., 1995; Guerrero et al., 1996).
- La formación de coquera está afectada por el contenido de oxígeno de la atmósfera. En un estudio realizado por Sánchez-Molinero et al., (2010) se observó que la coquera se reducía cuando los jamones se secaban en una atmósfera con un contenido de oxígeno que oscilaba entre el 0,5 ± 0,2% y el 3,5 ± 1,0%.
- El corte de la sínfisis isquiopubiana, eliminando el borde medial del foramen obturador (hueso puente) en los jamones en sangre, elimina la unión del aductor con la sínfisis pelviana, de forma que al deshidratarse la retracción se realiza mejor y se reduce el riesgo de oquedades (Hugas & Arnau, 1987b; Olmos-Llorente, 2006).

- En los jamones con corte V, el magro se retrae mejor que en los que poseen toda la piel (debido a la mayor resistencia que esta opone) (imagen 48d) con lo que se reduce la coquera (Gou et al., 2000; García-Gil et al., 2012).
- El recorte excesivo de la carne que recubre el foramen obturador hace que se produzca una retracción durante el secado y se forme un hueco con mayor facilidad.
- Si la HR durante el reposo es elevada, se produce un crecimiento importante de microorganismos que dificulta el sudado de la grasa que embadurna el magro durante la fase de secado, mientras que si la HR < 75%, el exudado de grasa es mayor (Arnau et al., 2003a). Esta grasa exudada protege al jamón del encostrado y facilita su retracción durante el secado (imagen 46e).
- El engrasado de la zona alrededor del hueso puente y aductor con manteca endurecida constituye la forma más común de prevenir la coquera. Para facilitar la aplicación suele fundirse previamente.
- El secado a temperatura elevada y HR baja produce una deshidratación elevada de la zona superficial que aumenta la incidencia de coquera.

Indicadores de la presencia de coquera

La coquera se detecta de forma clara al deshuesar el jamón. También se puede detectar antes del deshuesado por el sonido hueco que emite a la percusión o mediante punción con la cala sobre la superficie medial del aductor, o en el foramen obturador, la cual suele salir sucia, con una pátina de tonos marrones. La resistencia diferente al avance de la cala también proporciona información sobre la existencia de cavidades y de la extensión de estas. Otro indicador de la presencia de coquera es el pequeño acúmulo de ácaros en el hueso puente y un aspecto externo blanquecino que afecta principalmente a la cara medial del músculo aductor y zonas advacentes del semimembranoso, gracilis y pectíneo, debido a una proteólisis acentuada producida por proteasas de los mohos que generan una degradación de la estructura, aumentan la proteólisis y los precipitados de tirosina bajo la grasa de untado.

Soluciones

Así pues, a pesar de que la adición de manteca parece una solución sencilla, no está exenta de problemas, ya que una cantidad de manteca excesiva

Imagen 50a. Coquera glútea.

Imagen 50b. Coquera glútea.

o una aplicación prematura dificulta el secado, propicia el reblandecimiento superficial y favorece el crecimiento de microorganismos indeseables en superficie. Por tanto, aparte de lo indicado anteriormente, la mejor forma de combatir la coquera consiste en añadir la manteca en el hueso puente y en las zonas adyacentes al músculo aductor antes de que se inicie la formación de cavidades, lo cual depende del tipo de materia prima y del proceso de secado. A modo orientativo se recomienda hacerlo entre los 4-7 meses de procesado. Para optimizar el enmantecado es de especial utilidad la tomografía computarizada, ya que permite detectar el inicio de

Imagen 50c. Faenado que favorece la coquera glútea.

Imagen 51a. Proteólisis debida a coquera glútea.

Imagen 50d. Faenado que reduce la incidencia de desgarros y coquera glútea.

la formación de cavidades en el interior del jamón. Por otra parte, dentro de cada partida sería especialmente interesante realizar un "enmantecado de precisión" personalizado para cada jamón, en función de la merma corregida por grasa y del tiempo de secado previsto.

Aparte de la aplicación de grasa en el momento adecuado, esta problemática también se puede combatir mediante un perfilado adecuado y un secado suave.

1.13.2 Coquera glútea o de la punta

Se refiere a las cavidades u oquedades que se observan en la cadera (**imágenes 50a, b**). La coquera glútea se produce cuando se realiza un recorte de los músculos de la punta demasiado cercano al hueso puente, con lo que se elimina una buena parte del ligamento sacrotuberoso ancho que mantiene unidos los bordes proximales del *gluteus medius* con el *biceps femoris* (**imagen 50c**) (Olmos-Llorente, 2006). También se produce por desgarros debidos al moldeado, prensado o a los que producen las pe-

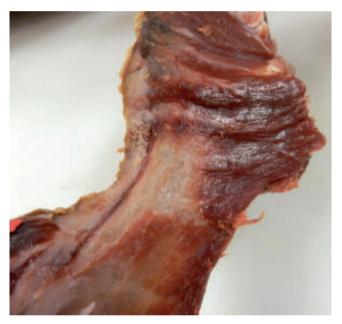


Imagen 51b. Proteólisis del magro debido a crecimiento de moho dentro del hueso.

zuñas al salar en bombo. En estas grietas/huecos se produce oxidación de la grasa, lo cual da lugar a cambios de color o crecimiento de mohos y entrada de ácaros que generan la coquera de la punta. En caso de que se haya producido un crecimiento de mohos en su interior, el enmantecado posterior, si bien previene la entrada de ácaros, dificulta la salida de humedad y facilita la actividad de las proteasas fúngicas, lo cual ocasiona texturas pastosas locales (imágenes 51a, b) y precipitados de tirosina.

Para evitar las coqueras glúteas es preciso dejar el ligamento sacrotuberoso ancho recubriendo parte del glúteo medio y parte del origen vertebral del bíceps femoral y unido a la espina ciática del coxal entre la

cara pelviana del ilion e isquion y el músculo obturador interno (Olmos-Llorente, 2006) (**imagen 50d**) y realizar un enmantecado adecuado.

1.14 Desfibrado del jamón al lonchear

Después del loncheado mecánico del jamón se observa a veces la presencia de zonas con separación de parte de la loncha o de las fibras musculares dentro de un músculo concreto. El desfibrado puede ser debido al uso de carnes de crecimiento rápido con tejidos inmaduros, a factores del propio músculo (loncheado perpendicular a la dirección de las fibras como por ejemplo en el músculo semitendinoso), poca cohesión entre músculos que puede empeorar al secar (e.g. la unión del aductor con el semimembranoso y con el cuadrado femoral), por falta de flexibilidad en piezas muy secas cuando son formateadas, a un almacenamiento prolongado en congelación y a diferencias en textura entre zonas en el momento de lonchear.

1.15 Deformación superficial

1.15.1 Hundimiento superficial/plegado excesivo

Los hundimientos se dan, en ocasiones, en la zona de la cadera y de la maza, lo cual dificulta el loncheado manual y da lugar a lonchas de peor aspecto (imágenes 2b, 52a). Están provocados por el tipo de perfilado, el tipo de secado del jamón y la textura interna. Este problema se ve favorecido si se disminuye el contenido de sal a valores de pH elevados y en los jamones muy conformados. Para reducirlo es conveniente pulir el magro externo adecuadamente para que el jamón tenga un aspecto plano desde el inicio, salar y enmantecar adecuadamente y realizar un control de mermas corregidas por grasa individualizado que evite la presencia de jamones sobremermados.

1.15.2 Agarbanzado de la grasa

El agarbanzado de la grasa se refiere al aspecto granuloso que presenta la superficie de la grasa especialmente en la zona de la maza (**imagen 52b**). Es más frecuente en las piezas de cerdo ibérico y, en general, en jamones grasos en que la grasa es fácilmente deformable. No se considera un problema. No debe confundirse con las marcas que deja la sal de grano grueso durante el salado.

Imagen 52a. Hundimiento superficial.

Imagen 52b. Agarbanzado de la grasa.

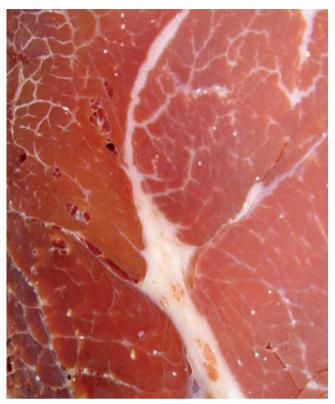


Imagen 53a. Cortes en el músculo producidos por el crecimiento de cristales de hielo durante un proceso de congelación/descongelación lento.

Imagen 53b. Desgarros y separación de músculos.

Es un fenómeno que suele aumentar por la pérdida de volumen de la grasa y en zonas donde se genera retracción (por pérdida de volumen del magro), y se ve disminuido en las zonas en que la pérdida de volumen del magro genera un estirado de la grasa (e.g. punta). Por otra parte, parece que donde más aparece es en las zonas donde el "pelado" (retirada de la piel) se realiza tirando de ella manualmente (Olmos-Llorente, J. V., comunicación personal).

1.16 Agujeros/grietas

La presencia de agujeros/grietas se debe bien a pequeños cortes dentro del músculo o a la separación de músculos. Los cortes que están presentes en la masa muscular pueden ser causados por la rotura de fibras ocasionada por cristales de hielo en productos congelados por periodos largos (imagen 53a) o que han sufrido un proceso de congelación/ descongelación lento. La separación de músculos puede ocasionarse por un prensado excesivo en fresco de las piezas (imagen 53e) (especialmente si son animales de crecimiento rápido), por las tensiones durante el secado (imagen 53b) y en el prensado en los productos curados. Así, por ejemplo, se observa separación entre los músculos aductor y semimembranoso durante el secado cuando su humedad es muy baja (imagen 53c), en el codillo por efecto de un secado excesivo o retracción insuficiente, por formación de gas (e.g. jamones bombos), y por la separación de las fibras musculares causada por tensiones de secado, especialmente cuando el corte es perpendicular a las fibras (i.e. en los músculos semitendinoso y recto femoral).

En la grasa subcutánea, a veces, se observan desgarros fruto de las tensiones que ha sufrido el jamón en matadero, sala de despiece, prensado (**imagen 53d**) o secado.

1.17 Linfonódulos

En el corte manual es aconsejable la eliminación del linfonódulo poplíteo superficial ya que puede aportar sabores desagradables. El linfonódulo poplíteo profundo es menor y se considera que no es tan importante eliminarlo (Olmos-Llorente, 2006).

1.18 Cabellos

Los pelos y cabellos se consideran cuerpos extraños en los jamones y son rechazables desde un punto de vista estético y un posible vector de contaminación (e.g. *S. aureus*). Se calcula que se pierden entre 50 y 100 cabellos por día (Brown & Holah, 2006).

Para reducir la presencia de cabellos o pelos, deben auditarse los proveedores y asegurar que disponen de un plan de reducción de su presencia en la carne, cajas y otros materiales. Durante la manipulación, debe cubrirse totalmente el pelo y hay que asegurar la aplicación del orden correcto en que deben ponerse los componentes de protección: cabeza (un solo uso), cubrebarbas, ropa, calzado y guantes (tanto en la entrada, como en las pausas).

En los vestuarios se debe disponer de un espejo para que el operario pueda asegurar una buena colocación de los equipos de trabajo. Se debería dis-

Imagen 53c. Separación de los músculos aductor y semimembranoso debido a tensiones durante el secado.

Imagen 53d. Desgarro de la grasa subcutánea de jamón con corteza producidos por prensado de la pieza.

Imagen 53e. Desgarro producido por prensado excesivo del pernil después de salazón.

poner de un sistema inclinado de soplado de aire a los operarios previo a la limpieza y otro previo a la entrada en planta, de esta forma se evitaría que entrasen cabellos y pelos a la planta de elaboración.

También debe evitarse la salida de pelos a través de las aberturas del uniforme. Para ello, se debe poner tejido elástico en la abertura de los puños o manguitos de un solo uso, en la zona del cuello debe colocarse una capucha que proteja los hombros, evitar escotes y utilizar camiseta de cuello redondo y de poca abertura.

Otra medida a tener en cuenta es que debe evitarse el sacar y poner el gorro dentro de las salas de trabajo, y tomar medidas adicionales en la manipulación si hay contacto de las piezas con la ropa. Se debe tener especial precaución en la zona de deshuesado y loncheado.

1.19 Condensaciones

La condensación en la superficie del producto o superficies en las que el producto contacte se produce cuando se alcanza el punto de rocío, lo cual suele suceder, entre otros, al aumentar la temperatura abruptamente en pasos intermedios del proceso, al preparar el producto para lonchear y en la fase posterior al loncheado previa al envasado. Previo al dimensionamiento de los equipos de secado, se propone reducir la entrada de aire caliente húmedo, reducir la generación de vapor (secar bien todas las superficies después de la limpieza y valorar el aporte de vapor por parte del personal) y mantener las su-

Imagen 53f. Cupping de jamón en pizza.

perficies a una temperatura superior a la del punto de rocío. La condensación en el interior del envase se produce cuando se alcanza el punto de rocío en la superficie del mismo (ver apartado 1.10.2).

La prevención de que los jamones se vean afectados por condensaciones de agua en la sala de salazón se logra mediante adaptación de los equipos de frío, reducción/eliminación de humectadores, reducción de la entrada de aire húmedo (e. g. cortinas de plástico adecuadas o cortinas de aire), recolección adecuada de condensaciones inevitables y protección adecuada de los contenedores a los que pueda caer accidentalmente agua de condensación.

1.20 Cupping

El cupping es un problema frecuente en productos cárnicos sometidos a tratamiento térmico. Al calentar las pizzas, las lonchas de jamón se calientan más en la parte superior que en la que está en contacto con la pizza. Los laterales de la loncha tienen una mayor relación superficie/volumen y tienden a alejarse de la pizza mientras que el centro permanece en contacto con la base de la misma (imagen 53f). Es decir, el cupping se realiza en la dirección de la fuente de calor, produciéndose desprendimiento de grasa y reacción de Maillard en los bordes (pardeamiento). Para disminuir la reacción de Maillard no deben añadirse azúcares y debe evitarse una proteólisis elevada. Cuanto más gruesa es la loncha, mayor es la diferencia de calentamiento (dentro de

un cierto margen) y mayor el *cupping*. En lonchas extrafinas apenas se observa, ya que este efecto no es capaz de vencer la gravedad y la adherencia a la base. El encostrado lo aumenta (Hoogenkamp, 1989), y el secado tipo QDS process[®] (Quick-Dry-Slice Process) lo disminuye.

1.21 Bajo rendimiento de loncheado

La mejora del rendimiento es un aspecto clave en la elaboración del jamón curado loncheado (Griot et al., 1998). Para ello debe mejorarse el rendimiento del jamón en piezas, en el deshuesado y pulido y en la reducción de lonchas de aspecto defectuoso.

1.21.1 Pieza entera

Para meiorar el rendimiento de loncheado se precisa una buena selección y perfilado de la materia prima, y la determinación individual del peso y del contenido de grasa del jamón en fresco. Debe uniformizarse el contenido de sal de las partidas para evitar piezas poco saladas que precisarían una merma elevada para dar la textura adecuada (ver apartado 3.1). Se recomienda instaurar protocolos para finalizar las piezas en el punto de merma adecuado, evitando que haya jamones sobremermados. Si se conoce el peso inicial, el contenido de grasa y la merma en un momento dado del proceso (e.g. durante el enmantecado), se puede preveer el tiempo que va a necesitar cada jamón para alcanzar la merma objetivo. Si para cada jamón se establece el valor de la merma a alcanzar corregida por la grasa en fresco (y si es posible por sal), se mejorará el tiempo necesario para tener la textura adecuada y el rendimiento de cada jamón.

Realizar un "enmantecado de precisión" puede ayudar a mejorar el rendimiento de las piezas, ya que lo que es importante es que se sequen las partes profundas evitando que sobremermen las zonas superficiales y las más delgadas del jamón.

Además, el enmantecado debe contribuir a reducir los problemas de oxidación internos (e. g. agrisado de la punta y del codillo, separación de músculos...).

1.21.2 Deshuesado y pulido

Para mejorar el rendimiento de deshuesado se precisa realizar actuaciones para reducir las coqueras, oxidaciones superficiales (tanto del magro como de la grasa) e internas, por ejemplo, bajo el hueso coxal, vasos sanguíneos y en el codillo. También debe evitarse un arrugado excesivo del producto (fruto de un mal perfilado, falta de sal, pH elevado, encostrado, mal enmantecado...) o un deformado por contacto con otras piezas o estructuras durante el salado o secado, ya que generan más mermas de pulido. Las formas planas evitan arrugados innecesarios y mejoran el rendimiento, especialmente cuando se hace un pulido mecánico. La abertura del jamón durante el deshuesado permite un repulido mejor de los huesos y una mejora en el rendimiento. El conocimiento del espesor de grasa subcutánea en distintos puntos del iamón curado mediante sistemas de Rayos X puede ayudar a estandarizar el contenido de grasa en el pulido y el contenido de grasa posterior de cada loncha. La reducción de la variabilidad de la merma corregida por grasa (por grupos de contenido de grasa, o mejor aún, de forma individualizada) avudará a tener una pérdida de agua más estandarizada en el producto. Por otro lado, la limpieza criogénica (Hamclean) elimina la necesidad de pulir la parte magra, elimina mohos, manteca y ácaros y mejora el rendimiento hasta un 4% comparado con el proceso tradicional.

La limpieza interna del producto en esta fase (zonas oxidadas, vasos...) cuando el producto está abierto permite una detección precoz que mejora los rendimientos posteriores del loncheado.

1.21.3 Lonchas correctas

El porcentaje de lonchas rotas aumenta en aquellas zonas que son:

- i) excesivamente secas, por lo que es conveniente efectuar acciones durante el proceso (engrasado) o después del deshuesado (uniformización del producto envasándolo al vacío) para evitar que determinadas zonas del jamón tengan una merma excesiva (e.g. codillo, músculo aductor, punta).
- ii) excesivamente magras o a las que se les ha eliminado una gran parte de la grasa, ya que la grasa y el tejido conectivo ayudan a mantener la loncha unida.
- iii) con textura pastosa derivada de un exceso de proteólisis.

Antes del loncheado se precisa congelar parcialmente el producto para tener una textura adecuada al sistema de loncheado y al tipo de producto a obtener. Cuanto más homogénea sea la relación sal/agua en las distintas partes de un mismo jamón y entre jamones, más homogéneo será el punto de congelación

y se podrá precisar mejor el punto óptimo de congelación (Fikiin, 1998). La temperatura de congelación más adecuada debe determinarse teniendo en cuenta la fracción de hielo del jamón y las características del equipo de loncheado. Una fracción de hielo baja dificulta el loncheado por la falta de integridad de las lonchas, mientras que una fracción de hielo muy elevada provoca texturas demasiado duras que generan mayor desgaste de las cuchillas (Gou, 2019). Algunas acciones que se realizan en la pieza entera (buen desangrado, enmantecado, etc.) y en el deshuesado (pulido de zonas oxidadas o con sangre) también pueden mejorar el rendimiento en el loncheado.

2. Textura

La textura del jamón depende en primer lugar de la materia prima, es decir, del contenido de grasa intramuscular (Gou et al., 1995; Guerrero et al., 1996; Virgili et al., 1995) y de la composición de la misma (Flores et al., 1984), del pH (Arnau et al., 1998; Guerrero et al., 1999), del potencial proteolítico (Virgili et al., 1995), del tipo de pulido (Gou et al., 2000), de la cantidad de colágeno y de su reticulación y, en segundo lugar, depende del proceso de secado-maduración de las piezas, es decir, del contenido de sal (Arnau et al., 1997a; Arnau et al., 1998), del tiempo y la temperatura a que es sometido (Arnau et al., 1997a; Parolari et al., 1994), de la oxidación de la grasa (Sánchez-Molinero & Arnau, 2010) y la intensidad de secado (Flores et al., 1984; Ruiz-Ramírez et al., 2005, 2006; Serra et al., 2005) y, finalmente, del tratamiento que haya sufrido el producto final (espesor de la loncha, tratamiento por alta presión (Serra et al., 2006), tratamiento térmico (Morales et al., 2008), etc.).

Después del sacrificio se inicia el proceso de maduración de la carne debido mayoritariamente a la desnaturalización y rotura de las proteínas (Ouali, 1990). Posteriormente, la sal añadida confiere cierta consistencia a la carne. A lo largo del proceso de secado continúan los procesos de proteólisis y la pérdida de agua (que acentúa los fenómenos de insolubilización proteica [Hortós, 1994]). El corte ultrafino confiere una agradable sensación de fusión en boca, aumenta la desmenuzabilidad del magro y la untuosidad de la grasa y disminuye la fibrosidad y la dureza, facilitando la masticación del jamón curado. Lamentablemente, apenas se ha encontrado información sobre el impacto de la nutrición animal, el crecimiento muscular

Imagen 54. Equipo para clasificar jamones en base al pH.

y el turnover proteico en la textura del jamón curado (Čandek-Potokar & Škrlep, 2012). Sin embargo, en base a los resultados obtenidos en carne fresca se puede pensar que pueda existir un cierto efecto. Así, por ejemplo, se conoce que cuando existe una restricción energética importante en la dieta del animal. la síntesis de proteína disminuye y aumenta la degradación de las proteínas para suministrar al animal suficientes nutrientes (i. e. aminoácidos y glucosa). Por otra parte, se ha observado que una estrategia de crecimiento compensatorio aumenta la síntesis y la degradación de la proteína muscular (Therkildsen et al., 2004). El crecimiento compensatorio consiste en restringir ciertos nutrientes (sobre todo proteínas) a los animales en sus estadios tempranos, cuando la alimentación es más cara, y luego, en etapas más tardías, alimentarlos con los niveles óptimos o incluso por encima de los requerimientos. Según Koohmaraie et al. (2002) la velocidad de tenderización post mortem está influida por la velocidad de degradación de las proteínas en el momento del sacrificio, por lo cual es de esperar que dicha velocidad de degradación también tenga un impacto en la textura final del jamón. De ello se deriva la necesidad de investigar el efecto de la gestión del turnover proteico muscular en la calidad del jamón.

Así pues, la textura final del jamón viene determinada por factores que tienen su origen en la materia prima, en el proceso y en el tratamiento final.

Cuando se realiza una valoración global del jamón, se valora positivamente que el producto se desmenuce con facilidad, que la grasa funda fácilmente y recubra el paladar (especialmente en ibérico), que sea jugoso y de dureza intermedia; por el contrario, se valora negativamente que sea excesivamente blando, pegajoso, pastoso, encostrado, con fibrosidad elevada, reblandecido y muy seco o duro (MAPA, 2021).

2.1 Textura blanda

2.1.1 Textura blanda del magro

La textura excesivamente blanda puede tener su origen en la materia prima o en factores de proceso. En cuanto a los factores relativos a la materia prima que favorecen texturas blandas destacan el potencial proteolítico de la carne (Virgili et al., 1995), que es superior en animales más jóvenes y con un pH bajo a las 24 h post mortem (pH₂₄ < 5,5 en el músculo SM), o un pH₂₄ elevado (pH₂₄ > 6,2) (Arnau et al., 1998) que da lugar a jamones más blandos a contenido de agua elevado (e.g. en el músculo biceps femoris) y más duros cuando el contenido de agua es bajo (e.g. músculo gracilis, imagen 32). En este tipo de jamones, se percibe una sensación pegajosa al tacto y, una vez hidratado por la saliva, una elevada viscosidad en boca. lo cual se considera que es debido al efecto de un pH elevado en la funcionalidad de las proteínas. Esta sensación también se observa en embutidos curado-madurados de pH elevado. La textura adhesiva de los jamones de pH elevado se diferencia de la de los jamones pegajosos por proteólisis (pH₂₄ < 5,5), ya que, en los primeros, al secar, la pegajosidad desaparece y el jamón se vuelve más duro de lo normal, mientras que en los segundos se precisa una merma muy superior para tener una consistencia adecuada (en casos extremos no se logra la consistencia adecuada, aunque la merma sea muy elevada).

La presencia de un exceso de grasa intramuscular e intermuscular que dificulte el proceso de salado y el secado también puede contribuir a conferir una textura blanda.

Desde el punto de vista del proceso, se ha observado un aumento de la incidencia de jamones blandos cuando el contenido de sal es bajo, la temperatura de procesado elevada (Arnau et al., 1997a) y el enmantecado se efectúa muy pronto o con un espesor excesivo, de forma que se dificulta la salida de agua. La zona magra cercana a la grasa subcutánea que arropa al jamón y que está cubierta de grasa exudada no precisa engrasado. Si se le aplica grasa se dificulta el secado y se favorece la aparición de textura blanda en dicha zona.

Aparte de la selección de la materia prima (evitar jamones con $pH_{24} < 5,5$ y $pH_{24} > 6,2$ mediante sistemas de selección en continuo, **imagen 54**), se puede frenar la incidencia de texturas blandas actuando sobre aquellos parámetros que disminuyan la pro-

Imagen 55a. Jamón con textura pastosa.

teólisis (acelerar la absorción de sal y el secado, aumentar el contenido de sal hasta niveles que no sean rechazados por el consumidor, disminuir la temperatura media de proceso y evitar un engrasado prematuro o excesivo), procurando que el proceso sea lo más homogéneo posible (selección de materia prima, homogeneidad de la pila de sal, homogeneidad de secado y selección del producto final). Al final del proceso se puede aumentar la firmeza de los jamones mediante un secado rápido del interior del jamón después del deshuesado, un tratamiento por alta presión (Fulladosa et al., 2009), o mediante un tratamiento térmico durante un tiempo corto (Morales et al., 2008). Por ejemplo, si se mantiene el producto a una temperatura entre 38 °C y 42 °C hasta que alcance dicha temperatura en el centro del producto, se observa una mejora en la consistencia que es más evidente cuanto más alta es la temperatura.

2.1.2 Textura blanda de la grasa

La textura blanda de la grasa se considera un atributo común en jamones de cerdo ibérico, pero en cambio se considera un problema en jamones serranos.

Así, por ejemplo, se observó en una partida de jamones serranos que habían sufrido un postsalado muy húmedo y que presentaban zonas con grasa blanda una estructura celular de los adipocitos degradada, mientras que la zona de la grasa con textura normal presentó una estructura de los adipocitos normal. La zona defectuosa presentó unos recuentos elevados de levaduras muy superiores a los de la zona normal.

Se ha observado también que la adición de MgCl₂ puro a la grasa subcutanea causa una degradación de la estructura, generando una textura blanda y es-

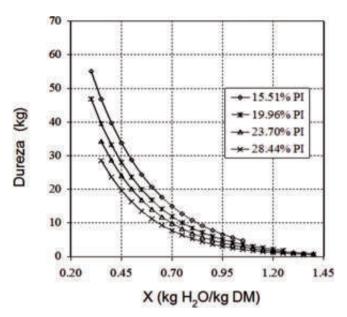


Imagen 55b. Relación entre el contenido de agua y la dureza a distintos índices de proteólisis (Ruiz-Ramírez *et al.*, 2006).

tructura celular degradada; sin embargo, no se ha observado efecto del MgCl₂ a las dosis máximas que se encuentra en sal de salazón.

2.2 Textura pastosa

En los jamones en que se haya producido una proteólisis elevada, la textura es adhesiva, blanda y poco elástica, dando lugar durante la masticación a una sensación de pastosidad. La evaluación de la textura pastosa se hace mediante la integración de los atributos adhesividad, dureza y elasticidad, típica de jamones con un alto índice de proteólisis (imagen 55a). También se considera como la sensación percibida al tocar con los dedos una muestra adhesiva, poco dura y elástica (Arnau et al., 2011b). La sensación pastosa es más elevada cuando se realiza el corte transversal (perpendicular a las fibras) que cuando se hace longitudinal (en la dirección de las fibras). Un mayor contenido en grasa intramuscular, de fusión o la adición de aceite aumenta el efecto lubricante y disminuye la sensación pastosa.

A medida que los jamones van perdiendo agua la dureza de los jamones aumenta (Serra *et al.*, 2005). Sin embargo, este incremento de dureza es menor en los jamones o en las partes del jamón que tengan un elevado índice de proteólisis (**imagen 55b**).

Cuando el jamón tiene pH₂₄SM < 5,6 en el músculo semimembranoso la incidencia de jamones pastosos aumenta de forma importante, especialmente en

Imagen 55c. Textura pastosa en el músculo aductor debido a crecimiento de moho.

Imagen 55d. Textura pastosa en el músculo aductor debido a crecimiento de moho.

aquellos que tienen un elevado potencial proteolítico. En un estudio realizado en el IRTA (n = 391) se detectó un 24% de jamones pastosos (nota > 4 en una escala de 10) cuando el p H_{24} SM < 5,6 y tan sólo un 10% cuando el p H_{24} SM > 5,6. En los jamones con materia prima de pH bajo en el músculo semimembranoso el impacto de la disminución del contenido de sal en el aumento de la pastosidad es más importante que a pH intermedio o elevado (Gou *et al.*, 2008).

Según Rosenvold et al., (2001), la alimentación con una baja cantidad de carbohidratos digeribles tres semanas antes del sacrificio reduce el contenido de glucógeno muscular y el turnover proteico en el músculo longissimus. Por otra parte, Virgili & Schivazappa

(2002) señalan que el crecimiento compensatorio, al tener un mayor turnover *proteico*, si bien puede mejorar la terneza de la carne fresca, puede generar defectos de textura pastosa en jamón curado.

Un elevado turnover proteico puede aumentar la actividad enzimática residual después del sacrificio, especialmente si hay una elevada velocidad de degradación proteica, pero no se espera que dicha degradación proteica se vea afectada si la velocidad de síntesis proteica es elevada. La velocidad de síntesis se activa inmediatamente después de iniciar la alimentación compensatoria, mientras que la velocidad de degradación lo hace de forma más lenta (Therkildsen et al., 2002; Skiba, 2002). El turnover proteico global tiene una componente relacionada con el mantenimiento de la función celular y otra relacionada con el crecimiento. Esta última disminuye con la edad (Sárraga et al., 1993; Virgili & Schivazappa, 2002). Se ha observado que los jamones de cerdos sacrificados en invierno muestran mayor pastosidad que los sacrificados en verano (García-Rev et al., 2006), probablemente debido a que presentan una mayor actividad proteolítica (Virgili et al., 2002) y un mayor contenido de grasa. Por tanto, los jamones de cerdos sacrificados en verano al ser más magros absorben más sal.

Así pues, el uso de animales con menor velocidad de crecimiento y en consecuencia de menor *turnover* proteico sería beneficioso para reducir los problemas de pastosidad (Čandek-Potokar & Škrlep, 2012).

Desde el punto de vista del proceso, se observa un aumento de la incidencia de jamones pastosos en los procesos en que el contenido de sal es bajo, la temperatura de procesado elevada (Arnau et al., 1997a), no se realiza corte V (Garcia-Gil et al., 2012), o el enmantecado se efectúa muy pronto o con un espesor excesivo de forma que se dificulta la salida de agua. Tanto el enmantecado como el envasado de jamones en los que hayan crecido mohos da lugar, a medida que la humedad va migrando al exterior, a una textura blanda en superficie debido a la acción de las proteasas de los mohos que pueden generar, al cabo de un tiempo, texturas pastosas en la superficie. Este problema también se observa cuando se ha producido crecimiento de mohos en el interior de zonas localizadas cerca de algunos vasos sanguíneos, en el interior del músculo aductor (especialmente cuando carece de epimisio (tejido conjuntivo externo protector) (imágenes 55c, d), o bajo el hueso coxal (**imagen 51b**). Las exolipasas y exoproteasas se producen principalmente en casos de déficit de nutrientes en el microambiente que envuelve a los mohos.

El tratamiento por alta presión reduce la sensación pastosa de los jamones que presentan dicho problema y aumenta su fibrosidad (Fulladosa et al., 2009; Serra et al., 2006). Un estufaje corto a 38-42 °C da consistencia al jamón y disminuye la pastosidad, pero si se aumenta el tiempo se facilita la proteólisis y aumenta la incidencia de jamones pastosos, especialmente en los jamones de pH bajo. En los jamones de pH elevado el efecto del secado más rápido a temperatura elevada sobre la dureza suele ser más importante que el efecto del aumento de la proteólisis. Si se someten los jamones a temperaturas superiores a 42 °C la reducción de la pastosidad es mayor, pero aumentan las características de color v textura asociadas a los productos cocidos. El tiempo de estufaje para alcanzar la temperatura deseada en el centro del producto depende de factores ambientales como la temperatura, HR, ventilación y situación de la pieza en el secadero/horno/caldera y de factores de la propia pieza (temperatura interna, conformación, composición, envase...) y suele oscilar entre 12 y 36 h. Para calcular el tiempo mínimo de procesado se determinará cual es la zona más fría del secadero/horno/caldera, y en dicha zona se monitorizará la temperatura en los jamones más grasos, conformados y de mayor tamaño del lote.

Si bien la presencia de jamones pastosos supone un problema, sería interesante investigar si presentan ventajas nutricionales, por ejemplo en lo referente a concentración de péptidos bioactivos con propiedades antihipertensivas, antiinflamatorias y antioxidantes. Si fuera así, este problema tecnológico se podría convertir en una ventaja nutricional.

2.3 Encostrado

El encostrado se evalúa por la diferencia de aspecto y de textura visual que se observa entre la parte medial y lateral del jamón debida a diferencias en el contenido de humedad (**imagen 56a**) (Arnau et al., 2011b). Con frecuencia, los jamones encostrados presentan un aspecto arrebatado fruto de un secado brusco. El desarrollo del encostrado puede facilitarse por una materia prima muy magra, en la que el secado de la superficie se produce muy rápidamente y la migración del agua del interior no es

Imagen 56a. Encostrado.

suficiente para compensar dicha deshidratación superficial. Si esta deshidratación excesiva tiene lugar durante un período demasiado prolongado se forma una costra reseca, en la que la difusividad del agua a través de ella es más lenta. Por otra parte, el encogimiento del magro genera tensiones sobre la grasa intramuscular y facilita el aplastamiento de los adipocitos y el exudado de grasa en la zona encostrada, lo cual dificulta aún más la difusión del agua a través de la costra. Un pH elevado favorece también este defecto, ya que la proteólisis es menor, mientras que un pH bajo lo disminuye, ya que facilita la proteólisis. Un buen arropado de grasa frena el encostrado (imágenes 56b, d), mientras que un mal arropado lo favorece (imágenes 56c, e).

En aquellos jamones en los que se efectúa un reposo húmedo se produce un crecimiento importante de la microbiota superficial, que da lugar a un notable aumento del pH en superficie (Arnau & Gou, 2001). Este incremento en el pH y el menor sudado de grasa que muestran estos jamones favorecen la formación de una costra al secar (Arnau, 1993). Al inicio del

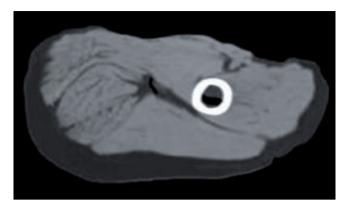


Imagen 56b. Jamón bien arropado de grasa.

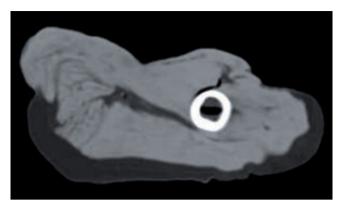


Imagen 56c. Jamón conformado y con una maza poco arropada de grasa.

Imagen 56d. Jamón muy arropado de grasa.

proceso, una a_w en la superficie del jamón ligeramente superior a 0,75, pero cercana a este valor, parece ser la más adecuada para optimizar el reposo, generar un buen gradiente de sal, evitar el crecimiento de mohos y evitar los problemas derivados de la cristalización de la sal en superficie o en el interior de la piel.

La presencia de mohos en superficie puede reducir el encostrado si estos son proteolíticos o se mantienen en condiciones que favorezcan la proteólisis.

La reducción del contenido de sal puede facilitar el encostrado, ya que a una misma HR ambiental el contenido de agua en el equilibrio en la superficie del jamón disminuye si disminuye el contenido de sal (**imagen 57**).

La costra reseca dificulta la retracción del jamón, lo cual puede conducir a la formación de agujeros

Imagen 56e. Jamón mal arropado de grasa.

en el interior de este (**imagen 58a**), de forma análoga a como ocurre en algunos embutidos curado-madurados o a desgarros del magro en la zona más externa (**imagen 58b**).

En los secaderos de jamones se puede dar en ocasiones una falta de uniformidad en el secado, lo cual puede tener su origen bien sea en un funcionamiento defectuoso del equipo o bien en una falta de homogeneidad del producto.

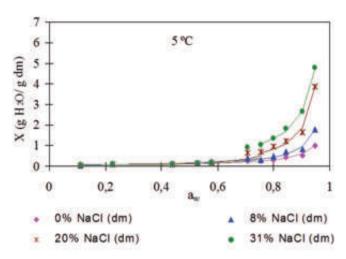


Imagen 57. Isotermas de sorción de carne salada (Comaposada et al., 2000).

Las causas de un deficiente funcionamiento del equipo pueden estar asociadas a averías en el equipo, a un diseño deficiente (e.g. obstáculos al paso del aire, poca distancia del producto al suelo o al conducto de impulsión, ancho insuficiente del pasillo lateral, dimensiones inadecuadas del secadero, etc.), o a un uso no adecuado (e.g. ventilación o barrido transversal inadecuados, etc.).

El funcionamiento defectuoso del equipo da lugar a defectos repetitivos en su localización en diferentes procesos. Mientras que una distribución aleatoria de los defectos puede tener relación con:

- i) una carga constituida por distintos tipos de jamones,
- ii) jamones que están en diferentes estados de secado,
- iii) jamones con una composición (e.g. contenido de grasa y sal) o distribución de la grasa distintos.

2.4 Fibrosidad del jamón

Se entiende por fibrosidad la percepción de fibras (partículas alargadas) durante el proceso de masticación. También se define como la propiedad geométrica de textura relativa a la percepción de partículas alargadas de orientación paralela (3.59, UNE 87-001-94). En jamón curado, tan sólo se considera un problema cuando su valor es muy elevado. Los músculos de la babilla corresponden a una de las zonas más magras del jamón, y por ello suelen presentar mayor fibrosidad. En jamones sometidos a un tratamiento térmico ligero o a alta presión la fibrosidad aumenta (Fulladosa et al., 2009; Tanzi et al., 2004). Por otra parte, la fibrosidad disminuye con la proteólisis y aumenta al hacerlo el grado de se-

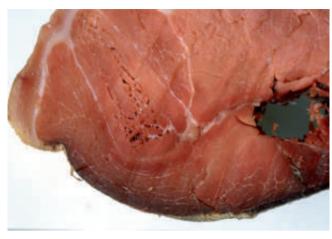


Imagen 58a. Agujeros debidos al encostrado del jamón.

Imagen 58b. Desgarros musculares de las zonas magras externas debido a las tensiones de secado.

cado. En jamón loncheado envasado en atmósfera protectora la fibrosidad aumenta en aquellas lonchas que se deshidratan (ver 1.10.2).

2.5 Adhesividad

Las lonchas de jamón tienden a adherirse si se superponen, especialmente cuando se envasan al vacío, lo cual representa un problema para el consumidor. Para facilitar la separación se utilizan con frecuencia separadores de plástico. La dificultad de separación de las lonchas depende:

- i) de la interacción proteína-proteína, que aumenta con el pH de la materia prima y con el índice de proteólisis (Pérez-Santaescolástica et al., 2018),
- ii) de la falta de cohesión de la loncha que es más común en los jamones que muestran textura pastosa,
- iii) de la interacción proteína-grasa,

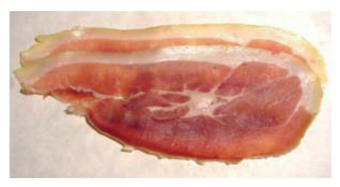


Imagen 59. Colocación de las lonchas solapadas, para mejorar el flavor y facilitar su separación.

- iv) de la interacción grasa-grasa, que aumenta al disminuir la temperatura y aumentar el tiempo de almacenamiento.
- v) de la interacción proteína/grasa con el film, y
- vi) de la dirección de corte (el corte longitudinal tiene más integridad y menor adhesividad que el transversal). La fusión y posterior cristalización de la grasa aumenta la adhesividad de las lonchas mientras se mantienen en frío. El atemperado del envase previo al consumo funde la grasa, reduce la adhesividad y facilita la separación de las lonchas.

En el caso del loncheado en charcutería la colocación solapada de las lonchas de forma que la grasa de una contacte con la zona media del magro de la otra facilita la separación cuando se atempera el producto (**imagen 59**). Además, la grasa subcutánea de una loncha impregna el magro de las adyacentes y las hace más jugosas, se reduce la adhesión grasa-grasa y magro-magro.

2.6 Resecado en la zona del codillo y la punta

La zona del codillo y la punta tienen un espesor menor que el resto del jamón, por lo que es de esperar que se deshidraten más rápidamente y queden más secos, especialmente en jamones magros. En jamones con tiempos de curación largos es recomendable enmantecar ligeramente el codillo y la punta para evitar una deshidratación excesiva (especialmente en jamones destinados a loncheado). Con ello, se tapan vías de entrada de aire y se mejora la elasticidad de la piel, lo cual facilita su retracción a medida que el magro se va deshidratando, y se evita la formación de cavidades y oxidación del magro. La adición de una pequeña cantidad de grasa sobre el ala del ilion frena el secado y rellena los poros del

hueso, por lo que se reduce la merma y da lugar a un producto más tierno.

2.7 Loncheabilidad deficiente

La loncheabilidad se podría definir como la facilidad de loncheado manual o mecánico para obtener unas lonchas de un espesor definido a una temperatura dada. En el loncheado mecánico se relaciona con el porcentaie de lonchas correctas, es decir, de espesor homogéneo, que no se arruguen o desgarren durante el loncheado. A medida que disminuye el espesor de la loncha la loncheabilidad disminuye, por lo que se podría establecer un espesor mínimo para alcanzar una loncheabilidad óptima (Gou et al., 2008). La loncheabilidad mejora si la temperatura del jamón está por debajo de su punto de congelación, por lo cual es conveniente que los contenidos de humedad y de sal sean homogéneos en las distintas zonas del jamón y entre jamones. Para el loncheado a temperatura superior al punto de congelación la homogeneidad de humedad y de sal ayuda a obtener lonchas homogéneas, y el disminuir la temperatura por debajo del punto de solidificación de la grasa también contribuye a mejorar la loncheabilidad. Por otra parte, al aumentar la pastosidad o disminuir el contenido de sal y grasa (pulido excesivo) disminuye la loncheabilidad (Gou et al., 2008; Morales et al., 2008).

3. Problemática de sabor/flavor

El flavor se define como el conjunto de percepciones de estímulos olfatogustativos, táctiles y quinestésicos que permite identificar un alimento y establecer un criterio, a distintos niveles, de agrado o desagrado. El flavor del jamón curado procede de la presencia de numerosas substancias que le confieren un sabor y aroma agradables y equilibrados. Mientras que el olor externo tiene matices rancios, al calar la pieza se encuentran notas agradables de curado-madurado, bodega, añejo y frutos secos. Actualmente, el jamón se consume de múltiples formas, como aperitivo, en bocadillos, con frutas, como toppings en ensaladas y pizzas, salteado, frito... No se han encontrado estudios científicos que afronten las implicaciones, en el sabor y aroma del jamón, de otros ingredientes de la comida, de la preparación previa o del patrón de masticación, pero parece evidente que el espesor de la loncha puede afectar, por ejemplo, a la velocidad de solubilización de las substancias solubles en agua que tiene el jamón, con importantes implicaciones gustativas, y la capa de grasa fundida puede ayudar a la extracción de substancias liposolubles, con implicaciones en el aroma. Por tanto, es necesario impulsar el establecimiento de unas bases científicas del maridaje de los alimentos y, específicamente, del jamón.

Durante la masticación, la integración de la saliva con la grasa y con el magro genera una masa con unas propiedades sensoriales que evolucionan debido a los procesos de reducción de tamaño, hidratación, extracción, reacciones ácido-base, aireación, emulsión, volatilización... que dependen del jamón y de la cantidad y composición de la saliva, que es muy variable entre individuos. La saliva puede modificar el flavor, pero los estímulos aromáticos pueden modificar las secreciones salivares. Así pues, el conocimiento de las diferencias en las propiedades de la saliva ayudaría a explicar las diferencias en la percepción del flavor. Como ejemplo concreto de consumo, se puede observar que, en la preparación de bocadillos de jamón con tomate, existe una sinergia importante del tomate con el jamón, ya que el tomate disuelve y hace más accesibles los aminoácidos libres y péptidos solubles en agua, con notas umami y kokumi, y, por otra parte, la sal potencia el sabor del tomate. El aceite, si es de buena calidad, proporciona aroma y facilita la absorción de los aromas liposolubles del jamón formando un todo armónico. Finalmente, la estructura porosa del pan puede acumular las substancias volátiles aromáticas que se desprenden del jamón. Otro ejemplo, que a nivel doméstico da buenos resultados, es envasar al vacío las lonchas de las partes magras (e.g. babilla) con un chorrito de aceite. El aceite llena los espacios que difícilmente se compactarían con las máquinas de vacío doméstico, aporta antioxidantes que protegen al producto, aporta aroma, confiere jugosidad y actúa como disolvente de las substancias aromáticas liposolubles del jamón, que posteriormente se perciben más fácilmente al masticar. Es conveniente seleccionar un aceite que actúe sinérgicamente con el jamón formando un todo armonioso, que aumente la complejidad y riqueza de matices de flavor, así como su persistencia.

Gusto

El sentido del gusto se sitúa fundamentalmente en la cavidad bucal, especialmente en la lengua, donde se encuentran los receptores específicos. Los gustos o sabores básicos descritos son: el dulce, el salado, el ácido, el amargo y el *umami*. Últimamente también se evalúa como posible sabor básico el de la grasa, aunque normativamente aún no está aceptado como tal. Otros candidatos a sabores son el sabor a calcio, metálico, *kokumi* y carbohidratos (Hartley *et al.*, 2019).

Los receptores de gusto se encuentran, además, en diferentes partes del cuerpo y tienen dos funciones principales:

- los inputs sensoriales afectan a lo que pensamos, decidimos y como nos comportamos frente a determinados alimentos tanto de forma consciente como insconsciente.
- 2) los inputs sensoriales afectan a la fisiología y al proceso metabólico, e informan de los nutrientes y toxinas una vez ingeridas. Estas dos funciones sirven para crear nuestras preferencias y hábitos alimentarios (Breslin, 2013).

Gusto umami

El gusto *umami* (delicioso en japonés) es un sabor básico del jamón. A pesar de que se asocia generalmente al glutamato monosódico libre, hay otras substancias como las sales del ácido aspártico y otros aminoácidos, así como numerosos péptidos y productos de la reacción de Maillard que también proporcionan gusto *umami*. Por otra parte, existen substancias que potencian el sabor *umami* (sinérgicos) como, por ejemplo, algunos péptidos y nucleótidos (isómeros 5': IMP, GMP).

El sabor umami estimula el apetito y el flujo salivar (facilita la masticación, deglución y limpieza de la boca), favorece la digestión, proporciona saciedad, indica al cuerpo la presencia de aminoácidos accesibles y contribuye a generar una sensación satisfactoria. Los compuestos con sabor umami contribuyen a equilibrar el sabor, hacerlo más sabroso y persistente, aumentan el sabor salado (a bajas dosis de sal) y el dulce, disminuyen el amargo y matizan el ácido. La estimulación de los receptores umami (presentes en todo el tubo digestivo) puede afectar a la absorción de nutrientes, ya que da información al cerebro y prepara el tracto digestivo para digerir proteínas. Además, sirve de ayuda a las personas con problemas de hipogeusia (sensibilidad disminuida para el gusto) e hiposalivación. Según Zhao et al. (2010), los receptores de umami están ausentes en los herbívoros.

Así pues, el sabor *umami* lo proporcionan los aminoácidos libres y péptidos que se generan durante la maduración y envejecimiento del jamón, fruto de los procesos proteolíticos que tienen lugar de forma natural sobre las proteínas de la carne y de las reacciones que sufren las substancias que de ellas se derivan, como por ejemplo de la reacción de Maillard. El *umami* es el sabor que más persiste después del consumo del jamón.

El contenido de aminoácidos libres aumenta al disminuir el pH de la materia prima, y es superior en el músculo biceps femoris (BF) que en el semimembranosus (SM) (Gratacós-Cubarsí et al., 2013). Debe tenerse en cuenta que en el músculo BF suele haber una mayor actividad proteolítica que en el SM; además, para cada aminoácido (AA) existe una tendencia a equilibrar la relación AA/agua, especialmente para los más solubles en aqua (lo cual está afectado por el gradiente de secado entre SM y BF). Por tanto, para obtener un sabor homogéneo debe realizarse un secado homogéneo evitando diferencias importantes en el nivel de secado entre los músculos externos y los internos que generarían distribuciones heterogéneas de algunos aminoácidos libres. La degradación de aminoácidos por microorganismos es de esperar que sea más elevada en la zona superficial, y la reacción de Maillard y degradación de Strecker de algunos aminoácidos también está más favorecida en el músculo SM, que es más seco que el BF.

Gusto dulce

El gusto dulce se considera una nota positiva que se suele percibir con mayor intensidad al aumentar el tiempo de maduración, y suele ser más elevado en aquellos jamones que presentan una nota añeja. Incluso la propia sal a baja concentración tiene sabor dulce. Además, se asocia a la presencia de algunos péptidos que se producen en el proceso de maduración, y podría relacionarse con la presencia de algunos D-aminoácidos que tienen sabor dulce (Marcone et al., 2020; Genchi, 2017). Mientras que los enantiómeros "L" de la histidina, leucina, fenilalanina, triptófano y tirosina son amargos, los enantiómeros "D" son dulces. Así, por ejemplo, el poder edulcorante de la D-valina, D-fenilalanina y D-triptófano es superior al de la sacarosa. A pesar de que la mayoría de los aminoácidos en la carne son L-aminoácidos, la presencia de D-aminoácidos se considera natural en alimentos fermentados debido en parte a la actividad

microbiana. Se ha detectado racemización a baja temperatura (25 °C) en algunos alimentos, siendo los principales factores que la afectan la temperatura, pH y tiempo de procesado (Marcone et al., 2020), por lo que no sería de extrañar la presencia de Daminoácidos en jamones curados, especialmente en los de larga curación. Para profundizar en este tema, y en las implicaciones que de ello se derivan, se precisa realizar estudios en diferentes tipos de jamones, usando diferentes procesos de elaboración.

Gusto a grasa

Recientemente se ha localizado un receptor químico (CD36), en las papilas gustativas de la lengua, capaz de reconocer las moléculas de grasa (Laugerette et al., 2005). Se ha detectado también que los individuos con mayor sensibilidad a este sabor tienden a consumir menos grasas que aquellos que no son capaces de detectarlo. Aún no está aceptado como sabor básico.

Gusto kokumi

Sabor asociado a ciertos γ -glutamil péptidos que activan un receptor de sensibilidad al calcio también sensible al glutatión. Es un conjunto de sensaciones características de los alimentos con sabores ricos, intensos y armónicos. Aún no está aceptado como sabor básico. Los γ -glutamil dipéptidos se han propuesto entre los components clave en la mejora de las propiedades sensoriales al aumentar el tiempo de curación (Sforza, et al., 2006). Estos dipéptidos pueden formarse por reacción entre aminoácidos catalizada por γ -glutamiltranspeptidasas, observándose un aumento con el tiempo de curación.

A continuación, se destacan los principales problemas de sabor del jamón curado.

3.1 Sabor salado

Si bien la función gustativa principal de la sal es la de potenciador del sabor, un ligero sabor salado se considera propio del producto, cuando es equilibrado y poco manifiesto, y por tanto aceptable, mientras que cuando el sabor salado domina y caracteriza el sabor del jamón se considera un defecto.

El sabor salado viene determinado por factores del propio jamón tales como el contenido de sal, la temperatura a la que ha sido sometido el jamón y a la que se sirve (Ventanas et al., 2016), por el grado

de unión que presentan los iones sodio y cloruro con las proteínas de la carne, por la velocidad de disolución de la sal al masticar y por la sensibilidad del consumidor al gusto salado, la cual se acentúa si disminuye la ingesta de sal en la dieta. Algunos estudios sugieren que ciertos aromas pueden aumentar el sabor salado a través de cambios de la percepción del sabor inducidos por el olor (Lawrence et al., 2009). Así, por ejemplo, se ha observado que el aroma a queso (Pionnier et al., 2004) y el de salsa de soja (Djordjevic et al., 2004) aumentan la percepción del sabor salado. En el caso del jamón parece pertinente preguntarse qué notas olfativas pueden contribuir a aumentar el sabor salado y cuales a disminuirlo. La sal ayuda a enmascarar el sabor metálico y amargo y aumenta el umami (Zhao et al., 2016). Por otra parte, algunos aminoácidos (Careri et al., 1993) y péptidos pueden aumentar el sabor salado.

Parece obvio que todo aquello que facilite la disolución de la sal dará lugar a un sabor salado de forma más rápida. La disolución de la sal estará relacionada con la textura y estructura del alimento y en cómo estas cambian al masticar.

Mientras que un ligero aumento de temperatura del jamón (de 7 °C a 16-20 °C) puede suponer un descenso del sabor salado atribuible al incremento del porcentaje de grasa fundida que, al recubrir las papilas gustativas, interfiere en la percepción del sabor salado durante el tiempo que dura la masticación (Ventanas et al., 2016), la aplicación de tratamientos térmicos (superiores a 40 °C) y el procesado por altas presiones (Fulladosa et al., 2009) incrementan la intensidad del sabor salado sin que se modifique el contenido de sal.

En el envasado en atmósfera modificada puede aumentar el sabor salado (Cilla et al., 2006) debido a la pérdida local de agua que sufren las puntas de las lonchas especialmente cuando el espacio de cabeza es elevado. Esto hace aumentar la heterogeneidad en el contenido de sal, que tiene como consecuencia un aumento del sabor salado.

Cuando la distribución de sal es heterogénea, el sabor salado de la loncha lo determina el punto más salado de la misma.

En el jamón serrano el contenido de cloruro sódico debe ser inferior al 15%, expresado sobre extracto seco y desgrasado. Dicha forma de cálculo penaliza a los jamones con un contenido graso más elevado,

ya que, en ocasiones, algunos jamones grasos superan este valor sin que ello se traduzca en un aumento del gusto salado debido a que la grasa enmascara el sabor salado (Olmos-Llorente, 2005).

La absorción de la sal consta de dos procesos: la formación de salmuera en contacto con la superficie del producto y la posterior difusión de los iones Cl-y Na+ desde la superficie al interior. La formación de salmuera depende de factores ambientales (HR y temperatura), de la materia prima (humedad superficial, capacidad de retención de agua, superficie de magro), de los ingredientes y aditivos utilizados (sal, agua, azúcares, nitrificantes, ascorbato...) y de su granulometría.

Para una buena absorción de sal deben aplicarse acciones para mantener la superficie del jamón empapada de salmuera, evitando un drenaje excesivo. Entre los factores que afectan al drenaie de la salmuera se pueden citar la forma del jamón, la deformación que los granos de sal generan en el jamón, la composición de la mezcla nitrificante y la temperatura del jamón y de la sal. Si la temperatura de la superficie del jamón y de la sal es inferior a +0,1 °C, se puede formar el hidrato NaCl·2H2O, que podría extraer agua de la salmuera formada, por lo que podría constituir un factor que aumentase la variabilidad de contenido de sal del jamón. La forma del fondo del contenedor y los puntos de evacuación de salmuera afectarán a la cantidad de salmuera que permanece en contacto con el jamón e influirá en la cantidad de sal absorbida por dichos jamones. Los jamones de pH elevado tienen una mayor capacidad de retención de agua y exudan salmuera de forma más lenta, lo que permite mantener más superficie empapada de salmuera durante más tiempo, lo cual podría ser uno de los factores que explique el mayor contenido de sal que se ha encontrado en diversos estudios (Ruíz-Ramírez et al., 2005).

La mayoría de los estudios realizados en carne y productos cárnicos muestran que el movimiento de la sal en el interior de dichos productos se ajusta de forma razonable a un proceso difusivo (Andújar & Tarrazo, 1981) que puede ser explicado por las leyes de Fick. Según estas leyes, la difusión de los iones Cl⁻ y Na⁺ depende de la superficie de magro en contacto con la salmuera, del espesor, del gradiente de concentración, del tiempo de salado (**imagen 60a**) y del coeficiente de difusividad. El coeficiente de difusividad es una característica propia del producto

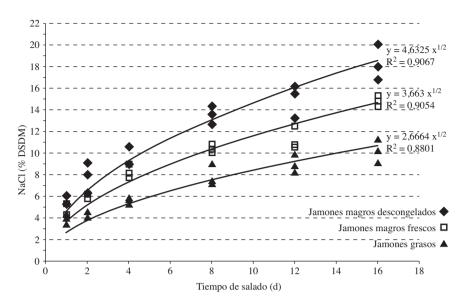


Imagen 60a. Modelos para predecir el contenido total de sal en base seca desalada. El modelo relaciona la cantidad de sal absorbida en función de la raíz cuadrada del tiempo, utilizando Jamones grasos (n=18, \blacktriangle), Jamones magros frescos (n=18, \blacksquare) y Jamones magros descongelados (n=18, \spadesuit), (Serra et al., 2010).

que depende de su composición (contenido de agua, sal y grasa), temperatura y estructura, la cual está afectada entre otros factores por la congelación/descongelación.

Factores que afectan

a la variabilidad del contenido de sal

Para disminuir la variabilidad del contenido de sal, debe aumentarse la homogeneidad de la materia prima en aquellos aspectos que condicionan la formación de la salmuera superficial y la difusión de los iones Na+ y Cl-: peso, tipo de corte, pulido, espesor, forma, contenido de grasa, pH, capacidad de retención de agua de los músculos, tipo de congelación-descongelación y humedad superficial del magro, de la grasa y de la corteza (Garcia-Gil et al., 2012). Es importante clasificar los jamones por pesos para uniformizar la absorción de sal, tanto para definir con exactitud el tiempo durante el que deben estar cubiertos de sal en procesos de salado en pila, como en el salado con una cantidad de sal limitada, ya que en este caso las piezas pequeñas tienen una mayor relación superficie/volumen que las grandes, y por tanto se traduce en una mayor cantidad de sal absorbida por unidad de volumen, lo cual aumenta la heterogeneidad del contenido de sal entre jamones. La clasificación por contenido de grasa (variable entre diferentes estaciones del año) también permite reducir la variabilidad del contenido de sal. Los jamones con muy poca grasa subcutánea

(imagen 53b) absorben una cantidad importante de sal por la zona de la piel. Por otra parte, en verano los animales son más magros que en invierno y absorben más sal. La capacidad de retención de agua de la superficie del jamón puede verse afectada por el proceso de refrigeración que tiene lugar en el túnel de enfriado de canales, ya que, si bien puede disminuir la problemática de carnes PSE, en ocasiones se congela la superficie del jamón. La humedad superficial se ve afectada por la HR ambiental y el tiempo en que permanecen los jamones en cámaras (Garcia-Gil et al., 2014). La humectación del jamón antes del

salado, mediante duchado o nebulizado con agua, contribuye a reducir la heterogeneidad de la humedad superfícial y a facilitar la disolución y absorción de la sal. Dentro de un mismo tipo de materia prima, los jamones con menos merma en el salado son los que absorben menos sal, y los de más merma los que absorben más sal. Por tanto, la merma podría utilizarse como un criterio para determinar qué piezas son las que tienen más o menos sal.

La temperatura también puede tener un efecto en la cantidad de sal absorbida. Garcia-Gil et al., (2014) no encontraron diferencias significativas en la absorción de sal entre -1 °C y +0,5 °C, pero sí hallaron un aumento significativo al salar a 4 °C.

Por otra parte, es importante asegurar la uniformidad de:

- (i) la mezcla de presalado y de la sal de salazón (granulometría, temperatura, contenido en agua, composición de ingredientes y aditivos),
- (ii) el sistema de salado,
- (iii) el ambiente (distribución de temperatura y HR) durante el salado, el reposo, el secado-maduración y la bodega,
- (iv) el efecto que en algunos contenedores pueden tener los humectadores ambientales y las pérdidas de salmuera de los contenedores superiores sobre los inferiores.

El impacto de cualquier modificación tecnológica en la variabilidad del contenido de sal debe evaluarse en un elevado número de jamones de diferentes lotes, teniendo en cuenta el contenido total de sal del jamón. La evaluación del contenido de sal local puede dar idea de la difusión de la sal o de su distribución en el jamón, pero no necesariamente de la homogeneidad entre jamones.

La redistribución de la sal tiene lugar durante todo el proceso de elaboración, ya que existe una tendencia a igualar la relación sal/agua. Bou et al., (2021) encontraron que la relación sal/agua del músculo BF dividida por la del SM (n=5 en cada muestreo) era de 0,34 después del salado, 0,48 a los 69 días, 0,79 a los 6 meses, 0,94 a los 9 meses y 0,97 a los 15 meses (un valor de 1,0 indica que la sal está totalmente equilibrada en fase acuosa). Así pues, durante los primeros meses del proceso se produce un movimiento de sal desde la superficie del jamón hacia los músculos internos debido al gradiente de sal. Posteriormente, la pérdida de agua en el exterior hace aumentar la relación sal/agua en el exterior, por lo que la sal sigue migrando hacia el interior para equilibrar dicha relación, con lo cual las zonas secas cederán paulatinamente la sal a las zonas húmedas del interior, en las que aumentará el sabor salado a lo largo del proceso. Por lo tanto, cuanto mayor sea el gradiente de agua entre el exterior y el interior, mayor será la diferencia en el contenido de sal (tanto en base húmeda como en base seca). Este problema puede agravarse cuando el tiempo desde que se empieza a cortar una pieza de jamón hasta que se termina de consumir es muy largo. Sin embargo, cuando se envasa el jamón al vacío, el agua tiende a migrar del interior al exterior, por lo que se producirá también un movimiento de sal del interior al exterior para seguir manteniendo la relación sal/agua constante, con lo cual se reduce el sabor salado global del jamón. Esta es probablemente la razón por la que el jamón envasado al vacío suele ser menos salado.

Por otra parte, se ha observado que, considerando todo el magro del jamón, el contenido de sal en base seca aumenta durante el proceso. Así, por ejemplo, Boadas et al. (2000) observaron, en jamón sin pata, que del contenido total de sal absorbido por el jamón al final del salado, el 79,82% correspondía al magro y el 20,18% al resto formado por la piel, huesos y grasa subcutánea e intermuscular. A los 180 días, el 91,38% correspondía al magro y el 8,62% al resto. Por lo tanto, el contenido de sal global del magro, después del salado, tan sólo es un buen predictor

del contenido final de sal del jamón, si se considera el aporte de las zonas no musculares. El aporte de sal desde la pata, también puede aumentar el contenido de sal en jamones con pata envasados al vacío y en procesos de larga curación, como los que tienen lugar en jamones de cerdo ibérico, en los que si bien no contribuye a estabilizar el jamón durante el reposo, puede aumentar el contenido de sal durante la fase de bodega, especialmente, cuando la humedad media es superior al 75%, ya que entonces se produce la hidratación de la pata y la formación de una salmuera saturada que puede gotear o difundirse a la zona magra (imágenes 43 a-d). Una forma de reducir el contenido de sal de la zona de la pata sería cubrir esta zona con sal tan sólo durante una parte del período de salado, completando el resto del tiempo con un aporte de sal limitado al resto del jamón excluvendo la pata. También es aconsejable un buen faenado de la materia prima, de forma que se eviten zonas aisladas anatómicamente (imágenes 2d, 41b), ya que estas contribuyen a aumentar el contenido de sal del jamón de forma innecesaria.

La determinación del contenido de sal en los jamones durante/después del salado (imagen 60b) mediante rayos X1 o inducción magnética2 permite ajustar el tiempo de salado y la cantidad de sal añadida de forma que no haya jamones excesivamente salados, y que aquellos que lo precisen puedan ser resalados para alcanzar el contenido de sal objetivo, con lo cual se disminuye de forma importante la variabilidad del contenido de sal (Fulladosa et al., 2013; Arnau et al., 2011a). La clasificación de la materia prima en función del contenido de grasa y la evaluación del contenido de sal global del jamón en un punto intermedio de la salazón (e. g. predicción mediante rayos X) permitiría obtener un modelo de absorción de sal para cada jamón, con lo que se podría ajustar mejor el tiempo necesario de salado en pila para reducir la variabilidad (v. g. reducir o aumentar los días previstos y además ajustar a horas o medios días si fuese posible).

La cantidad de sal absorbida por un contenedor de jamones se puede calcular conociendo el peso inicial y final de los jamones del contenedor, el peso inicial y final de sal de dicho contenedor y suponiendo que la pérdida de peso se ha efectuado como si fuera la de una salmuera saturada y, despreciando el efecto de la humedad ambiental. Realizando una cuantifi-

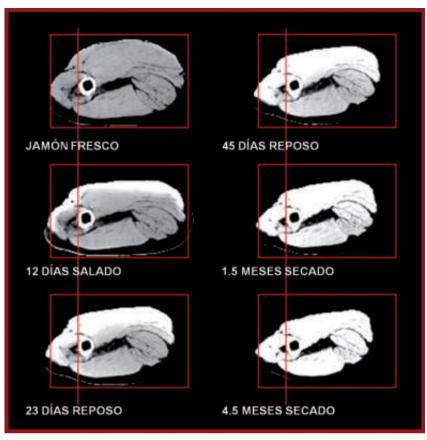


Imagen 60b. Determinación de la evolución del contenido de sal mediante tomografía computerizada.

cación de la salmuera desprendida se observa que suele ser proporcional a la raíz cuadrada del tiempo de salazón. Es decir que la "Salmuera perdida" = K(tiempo)^{1/2} + B (Barat et al., 2006). El valor B estaría relacionado con la salmuera que recibe el contenedor o con el retraso inicial debido al tiempo que se requiere para iniciar la deshidratación osmótica y el relleno de espacios como la zona superficial del jamón y el fondo del contenedor. El valor K sería una medida de la capacidad que tienen los jamones de generar salmuera. La evaluación de la absorción de sal por contenedor mediante balance de masas es útil para fines comparativos cuando se realizan cambios de materia prima o de proceso. La evaluación de la cinética de formación de salmuera da una idea de la velocidad de deshidratación osmótica y del grado en que los jamones están empapados de salmuera. Dicha información se puede complementar evaluando el porcentaje de superficie del jamón que se mantiene hidratada al final del salado.

Por otra parte, la determinación del contenido de sal final mediante sistemas no destructivos de control en línea (e.g. rayos X) puede permitir agrupar los jamones en función del contenido de sal, reducir la variabilidad final dentro de un lote y etiquetar aquellos que presenten un contenido reducido de sal (Giró-Candanedo et al., 2020). Para mejorar la homogeneidad del contenido de sal en los jamones etiquetados como reducidos es conveniente mantenerlos un tiempo importante envasados al vacío antes del loncheado, para que se homogenice el contenido de agua y sal. Como valor de contenido de sal promedio de mercado se pueden tomar valores de estudios efectuados de referencias claves de mercado.

En los jamones reducidos en sal en los que se utilice cloruro potásico es conveniente regular la cantidad añadida a cada jamón. Esto se consigue bien añadiéndolo en el presalado y salando después en pila (se pierde mucha cantidad y parte se mezcla con la sal de la pila) o en un segundo salado, por ejemplo, después de 4-6 días de salado en pila

(se pierde menos cantidad de KCl y permite ajustar mejor el contenido de potasio y el sabor final).

Reducción de formación de salmueras

Para reducir la cantidad de salmuera que se pierde se puede plantear:

- 1) Un salado de forma que cada jamón se trate con una cierta cantidad de sal (similar al jamón de Parma), dividiendo el proceso en dos fases, una primera más húmeda de unos 5-7 días a HR 75-90%, para asegurar la disolución de la sal, y una segunda más seca de unas dos semanas, para facilitar la concentración de la salmuera formada y evitar el remelo en las zonas no afectadas por la salmuera (HR= 70-85%).
- 2) Un proceso de salado en pila en el que se pueda disminuir la cantidad de salmuera ajustando la cantidad de agua aportada por los humectadores ambientales a la mínima necesaria para efectuar un salado adecuado.
- 3) Plantear el uso de contenedores cerrados en los que la salmuera (exudada y añadida) permanezca

dentro del contenedor junto con la sal seca añadida, eliminando los humectadores ambientales.

3.2 Sabor ácido

El sabor ácido es característico de algunos embutidos curado-madurados, pero no lo es del jamón serrano tradicional. La aplicación de bacterias lácticas cuando se añaden juntamente con azúcares y el uso de jamones deshuesados al inicio del proceso o en un punto intermedio del mismo facilitan la acidificación debido al crecimiento de bacterias lácticas, de forma similar a lo que ocurre en los embutidos curado-madurados (Bartholomew & Blumer, 1977).

En los jamones elaborados según la tecnología tradicional, el pH del producto tiene tendencia a aumentar ligeramente durante el proceso de maduración (Arnau et al., 1995). Este aumento es especialmente importante en la superficie de los jamones que han sido sometidos a una elevada humedad durante el reposo (Arnau et al., 2003a). En general, el sabor ácido no se considera un problema en jamones curados elaborados de forma tradicional y sin adición de azúcares, aunque Careri et al. (1993) consideran que la ligera acidez que se percibe en el jamón de Parma podría provenir de substancias derivadas de la proteólisis. Quizás, el uso de harina de arroz y pimienta junto con la grasa de enmantecado también podría contribuir a una ligera acidificación de dichos jamones.

3.3 Sabor amargo

Un ligero sabor amargo (similar al del L-triptófano) puede considerarse positivo, pero cuando es el sabor que domina constituye un defecto. El exceso de sabor amargo puede percibirse en jamones que han sufrido una proteólisis intensa, la cual puede dar lugar a la formación de péptidos y aminoácidos amargos. Para evitar este sabor sería conveniente evitar los perniles con un elevado potencial proteolítico (pH₂₄ < 5,5 y elevada actividad de las catepsinas) y el enmantecado prematuro, moderar la temperatura de maduración y no reducir mucho el contenido de sal.

En un estudio realizado en el IRTA (n = 391) se detectó, en jamones comerciales, un 30% de jamones amargos (nota > 3 sobre una escala de 10) en jamones con pH < 5,6 medido en el músculo semimembranosus a las 24 h postmortem (pH $_{24}$ SM) y tan sólo un 3,5% cuando el pH $_{24}$ SM > 5,6.

En diferentes ensayos se ha observado que si se almacenan jamones con un contenido reducido de sal y pH₂₄SM < 5,6 entre el quinto y el sexto mes de proceso a una temperatura de 25 °C se detecta en la mayoría de ellos un elevado sabor amargo en el músculo BF y en otros músculos interiores del jamón.

Arnau et al. (2006) observaron mayor sabor amargo en jamones sometidos durante el reposo a una HR de 80-85% que en los que se sometieron a una HR de 75-80% o 70-75%. Para reducir el sabor amargo se debe gestionar el proceso para facilitar la actividad de las peptidasas para que disminuya la concentración de péptidos amargos, y se favorezca la acumulación de compuestos de sabor umami (e.g. glutamato) y kokumi (e.g. γ-glutamil peptidos) que compensan el amargo (Zhao et al., 2016). El alargamiento del proceso de curación en condiciones de secado suaves y evitando encostrado sería lo más recomendable para estos casos.

El contenido de hipoxantina ha sido relacionado con cierto sabor amargo en la carne de cerdo (Tikk et al., 2006). Dado que se encuentra presente, en cantidades importantes, en el magro al final del proceso de curación del jamón (Clariana et al., 2010; Escudero et al., 2011), fruto de la degradación de la inosina, podría contribuir a dar cierto sabor amargo al jamón curado.

La adición de una cantidad elevada de sustitutos de sodio tales como algunas sales de potasio (cloruro potásico) o magnesio (cloruro magnésico) confieren también sabor amargo a partir de la adición de una cierta cantidad (Vidal et al., 2020), pero dicho sabor amargo difiere del producido por proteólisis excesiva. Para compensar este sabor amargo se pueden utilizar substancias con sabor dulce o *umami* que se superpongan con las del KCl y reduzcan el regusto final haciéndolo más agradable. El mantener el producto final envasado al vacío permite que se homogenice el contenido de agua y KCl, y se reduzca el sabor amargo que se detecta en las zonas más húmedas del interior del jamón.

Olor/aroma

El aroma del jamón curado procede de la presencia de numerosas substancias que le confieren unas propiedades olfativas características. Mientras que, hasta ciertos valores, algunas de las notas se consideran deseables, otras no. Así, por ejemplo, se han encontrado notas alcohólicas, queso, rancio, mantequilla, queso blando, plástico, verde, jabón, afrutado, manzana madura, dulce, disolvente, manzana verde, picante, irritante, melocotón, pies sucios, floral, queso azul, frutas maduras, madera, productos curados, champiñón, farmacia, frutal y dulce (Flores et al., 1997b; Garcia et al., 1991; Barbieri et al., 1992; Berdagué et al., 1991; Buscailhon et al., 1993).

El aroma del jamón curado viene condicionado por las substancias presentes en la materia prima, por las que se añadan durante la salazón/enmantecado/loncheado y por aquellas que se generen a lo largo del proceso de secado-maduración en cada jamón en particular. Así mismo, el aroma dependerá del grado en que dichas substancias están ligadas al sustrato y del contenido de grasa, que es fundamental para disolver algunas de las substancias aromáticas. También, pueden presentarse interacciones entre substancias que afecten a la percepción final del aroma.

Entre las notas consideradas deseables se encuentra la nota de grasa curada "añeja", que es típica de los jamones españoles de larga curación y que está relacionada con los fenómenos de oxidación de la grasa externa que tienen lugar durante la maduración (Gou et al., 2000; Sánchez-Molinero et al., 2010), y que afectan positivamente al magro adyacente a la grasa, sin que se perciba flavor rancio. En los jamones con corte V esta nota presenta mayor intensidad que en los jamones con piel.

La nota a frutos secos es una nota compleja, de origen desconocido, que suele ser más común en los jamones de larga curación y presenta mayor intensidad en el músculo semimembranosus que en el biceps femoris. Otras notas que se valoran positivamente son: las de madurado-curado, bodega, pan, mantequilla y queso. Por otra parte, hay notas tales como el picante, que pueden considerarse positivas si son ligeras, y negativas si son dominantes.

La superficie del jamón constituye una zona clave en su desarrollo aromático, ya que es donde se producen en mayor intensidad las reacciones de oxidación, reacciones de Maillard, actividad de la microbiota bacteriana y fúngica, y las interacciones entre ellas. Es la zona a través de la cual tiene lugar el intercambio de substancias con el producto y en la que podemos regular la a_w superficial. Un conocimiento más profundo de las reacciones que tienen lugar en la superficie del jamón en función de la a_w

sería de gran utilidad en la mejora de las características sensoriales del jamón curado.

A continuación, se destacan los principales problemas de aroma del jamón curado.

3.4 Defectos de cala

Para la evaluación de piezas enteras con hueso, aparte del aspecto y la textura, se suele evaluar la sonoridad (al golpear con la palma, los nudillos o los dedos) y el olor interno evaluado mediante "calado de la pieza". De entre los olores que se consideran anómalos al calar la pieza podemos destacar: cala, acidez, humedad, ácaros, pastilla de caldo, café etc. Algunos de dichos olores (por ej. cala y ácido) indican que la pieza no es apta para el consumo y otras que a pesar de ser apta, afectan negativamente a la calidad.

Se denomina "cala" a una familia de defectos, con olores característicos, que se detectan en jamones que han sufrido en algún momento del proceso un crecimiento de microorganismos indeseables, dando lugar a olores putrefactos que se detectan al calar o incluso oliendo la superficie del jamón. En algunas ocasiones se perciben algunas notas que recuerdan al olor a cala, pero de forma menos pronunciada y durante un corto período de tiempo ("cala volátil"). En estos casos no se considera un problema o es un problema menor.

Las substancias volátiles responsables del olor que presentan los jamones de cala han sido estudiadas por diversos autores (Carrapiso et al., 2010; Martín et al., 2010; Martín-Gómez et al., 2022) e incluyen, entre otros, hidrocarburos, alcoholes, ácidos orgánicos, ésteres, pirazinas y compuestos azufrados

En la literatura científica existen otros nombres que sirven para expresar algunos de estos defectos. Así, por ejemplo, en castellano se habla de hueso hediondo y putrefacción profunda, en inglés bone taint, ham souring, deep spoilage y deep putrefaction (Blanco et al., 1997).

Cuando se forma gas en su interior y suena hueco se le denomina jamón "bombo" (Arnau & Hugas, 1987). El problema de los jamones "bombo" se ha podido reproducir inoculando *Serratia liquefaciens* en fresco o después de salazón (Carrascosa *et al.*, 1997), aunque también se han encontrado jamones bombos con altos recuentos de bacterias lácticas heterofermentativas, y probablemente pueda oca-

sionarse por otras enterobacterias. Los problemas de cala pueden afectar a toda la pieza o a algunas zonas concretas (vena, maza, codillo, coxal...). Actualmente, la incidencia suele oscilar entre un 0 y un 1%, aunque de forma ocasional se ha detectado hasta un 10% de jamones afectados dentro de un mismo lote. En algunas empresas se ha observado que a partir de una partida con alta incidencia de calas siguen otras con porcentajes elevados, y que paulatinamente se reduce la incidencia. Las causas de esta coincidencia pueden ser tecnológicas o microbiológicas, pero no han sido estudiadas hasta la actualidad.

Los jamones "bombo" flotan en soluciones salinas en las que los jamones normales precipitan al fondo del contenedor. La zona del jamón que contiene gas es la que flota con mayor facilidad.

El defecto de "cala" se trata de un conglomerado de defectos que pueden tener matices muy distintos en función de los microorganismos involucrados y de la composición del substrato afectado (zona, pH e ingredientes y aditivos añadidos). Suelen estar asociados al crecimiento de determinadas bacterias como Serratia liquefaciens, Proteus vulgaris y Enterobacter agglomerans (Baldini et al., 1984), Serratia plymutica, Serratia odorifera, Proteus mirabilis (García et al., 2000), Marinilactibacillus psychrotolerans (Rastelli et al., 2005), de las cuales Serratia liquefaciens parece ser la mayor responsable (Carrascosa et al., 1997; Leistner et al., 1983).

Los resultados de los análisis microbiológicos, realizados al final del proceso en jamones de cala, pueden ser similares a los de los jamones sin cala, ya que algunos de estos microorganismos pierden viabilidad durante el secado y pueden no ser detectados al final del proceso, con lo que únicamente permanecen los metabolitos desprendidos, que pueden tener una gran variedad de matices (notas azufradas, amoniacales, agrias, tostadas...) que incluso pueden transmitirse en cierto grado a otros jamones si están en contacto o se apilan durante varias semanas. La detección precoz del problema (e.g. durante el engrasado) y el efectuar los análisis microbiológicos hacia los 4-6 meses de proceso puede dar información sobre el tipo de microorganismo responsable y de la posible causa. El nitrógeno básico volátil (NBV) que consiste fundamentalmente en amoniaco y aminas volátiles, en los jamones de "cala" suele ser muy superior al valor máximo de 100 mg de amoníaco por 100 g de producto (Blanco *et al.*, 1997), que se recomienda no superar en productos cárnicos.

Sin embargo, Pérez-Santaescolástica, et al. (2018) encontraron un valor medio de NBV de 389,88 mg /100 g de materia seca en jamones curados normales de capa blanca, sin que se vieran afectados por el índice de proteólisis. Cuando se comparan las características fisicoquímicas promedias de los jamones de "cala" frente a los jamones normales al final del proceso, se observa que tienen mayor pH, actividad de agua y contenido de humedad y de NBV, y menor potencial redox y contenido de sal y de nitrato (Blanco et al., 1997).

Para evitar el desarrollo de S. liquefaciens y E. agalomerans se recomienda fundamentalmente reducir la contaminación del jamón fresco, una refrigeración rápida v la absorción de una cantidad de sal adecuada en todos los puntos del jamón (pueden desarrollarse en el reposo a T < 5 °C y cuando la sal en fase acuosa es inferior al 7,5%). Sin embargo, para prevenir la alteración por Proteus lo más recomendable es prolongar el período de reposo a baja temperatura (Losantos et al., 2000), ya que Proteus no se desarrolla a baja temperatura (T < 10 °C), pero si sobrevive al reposo (en función de los recuentos iniciales y la velocidad de inactivación, que aumenta con el contenido de sal) puede alterar el jamón al aumentar la temperatura, si la concentración de sal en fase acuosa es inferior al 7.5%.

Es de esperar que los perniles tengan una cierta contaminación superficial por determinadas bacterias, y que pueda producirse una cierta entrada si se abren vías desde el exterior, por lo que es imprescindible mantener la estructura del jamón intacta. Entre los elementos que pueden dañar la estructura se encuentran: los ganchos para el colgado de jamones, sondas de medida, prensas, rodillos, bombos, elementos de corte, agujas de invección de salmuera, etiquetas, etc. Así pues, para reducir la contaminación del interior del jamón por microorganismos indeseables, que pueden afectar negativamente a la seguridad y calidad, es aconsejable substituir los controles invasivos de temperatura que se hacen a una submuestra de jamones, por procesos validados en que teniendo en cuenta la temperatura ambiental y el tiempo de estancia en cámara se pueda determinar el valor de la temperatura interna del producto.

En un estudio realizado por Guerrero *et al.* (1991) se observó que la incidencia de calas era variable en función del matadero y no estaba afectada por la sala de despiece. Por otra parte, la incidencia de jamones con pH₂₄SM > 6,2 y la contaminación media de los jamones en función del proveedor (matadero) estaban correlacionados de forma positiva con el porcentaje de calas.

El uso de jamones congelados podría aumentar las calas frente a los productos frescos si el tiempo antes de congelado y el de descongelación son excesivamente largos, o si hay un incremento de la temperatura superficial (Ts) del jamón (Ts > 5 °C) durante la descongelación.

La adición de nitrito en el presalado reduce de manera importante el porcentaje de calas, probablemente, debido a la reducción de la microbiota superficial producida por una elevada concentración de nitrito (Arnau et al., 2013). Este efecto es más importante cuando el pH de la carne es bajo, ya que se reduce más rápidamente a óxido nítrico. El efecto del nitrato es menor, ya que por sí solo carece de propiedades conservadoras, y su efecto depende de su reducción a nitrito. Sin embargo, cuando se genera el nitrito a partir del nitrato, las bacterias alterantes han tenido suficiente tiempo para crecer. Incluso se ha observado un contenido medio de nitrito superior en jamones deteriorados que en los aptos para el consumo (Leistner et al., 1983).

En jamón de Parma, los problemas de las partes profundas son más comunes en los meses fríos, mientras que los de las zonas superficiales son más típicos del verano (Parolari, 1996). Según este autor, la aparición de los defectos superficiales es debida a una mayor temperatura de los jamones en fresco, un tiempo más largo de estancia en cámara antes del salado y una menor merma después del segundo salado y primera fase del reposo (los primeros 15 días).

Durante el salado debe evitarse el contacto de los jamones con las paredes del contenedor y entre sí, y durante el reposo y secado se debe evitar que entren en contacto con las estructuras o entre sí, ya que puede crecer un limo que produce olores desagradables que se transmiten al producto.

El momento del reposo en que se inicia el aumento de temperatura por encima de 5 °C es crítico para la incidencia de calas, ya que es cuando la actividad microbiana deteriorante puede aumentar si la a_w no ha disminuido suficientemente en las partes profundas

del jamón. Para determinar la actividad de agua adecuada antes de iniciar el incremento de temperatura por encima de 5 °C se recomienda instalar equipos (e.g. rayos X²; inducción magnética³) multifrecuencia que permiten determinar el contenido de grasa en fresco y el contenido de sal al final de salazón. Con la trazabilidad individual y la información que aportan dichos equipos se pueden detectar aquellos jamones que hayan absorbido una cantidad insuficiente de sal (al final de la salazón), y predecir la merma mínima que debe tener para realizar cada aumento de temperatura en cada una de las distintas fases del proceso para reducir los riesgos de deterioro y de seguridad alimentaria, predecir la evolución de la merma durante el proceso, el tiempo de curación necesario y la merma final para tener la textura adecuada.

Para prevenir el defecto de la "vena" (olor putrefacto en la zona de la vena) se precisa un buen control de temperatura superficial durante el salado y reposo, desangrado correcto, presencia de sal en la babilla durante el salado, una buena deshidratación durante la primera fase de reposo y unas buenas prácticas de higiene.

Para prevenir los jamones "bombos" se precisa una rápida refrigeración de la pieza en matadero/sala despiece, un salado correcto y un reposo prolongado.

Prevención

Para disminuir el porcentaje de calas, aparte de las medidas de higiene de la materia prima y de los equipos y materiales que contactan con el jamón, es recomendable efectuar una refrigeración rápida de la canal (sin que los jamones se toquen), desangrar bien antes y después del salado, evitar los jamones que presenten un pH₂₄SM > 6,2, evitar recontaminaciones (e.g. mediante las sondas de control invasivo de la temperatura interna, calado cuando el producto está en proceso...), utilizar nitrito, presalar los jamones en la mayor brevedad posible, cubrirlos de sal tan pronto la temperatura interna esté entre 1-3 °C, reducir la variabilidad de contenido de sal (evitar valores baios), realizar un secado rápido después del lavado y prolongar la fase de reposo a una temperatura de 1-3 °C hasta que la aw haya disminuido lo suficiente para frenar el desarrollo de microorganismos alterantes.

² https://www.fossanalytics.com/es-es/

³ https://lenz-instruments.com/es/producto/ham-inspector/

En los jamones sin nitrificantes debe tenerse en cuenta el posible crecimiento de *Clostridium botu-linum* no proteolítico (psicrótrofo) en las fases de salado y reposo (Merialdi *et al.*, 2016; Lindström *et al.*, 2006), por lo que debe evitarse que la temperatura sea superior a 3 °C hasta que la a_w en la zona más desfavorable del interior del producto no haya descendido hasta valores inferiores a 0,97. Para evitar el crecimiento de *Clostridium botulinum* proteolítico (mesófilo) en los productos sin nitrificantes, la temperatura no debe superar los 12 °C hasta que la a_w en la zona más desfavorable del interior del producto sea inferior a 0,94 (Tapia *et al.*, 2007).

3.5 Rancio

Durante el procesado, los lípidos sufren fenómenos de lipólisis y de oxidación. Mientras que la lipólisis afecta a la estructura de los lípidos, y su implicación directa en la calidad del producto final no está clara, la oxidación genera una gran cantidad de substancias volátiles que tienen un impacto en el aroma del producto. Hay que tener en cuenta que los ácidos grasos libres insaturados son los más susceptibles a la oxidación, y que la formación de ácidos grasos libres está favorecida por un pH bajo (Buscailhon et al., 1994). Sin embargo, Gandemer (2009) considera que la hipótesis de que la lipólisis facilita la oxidación lipídica debe ser puesta en duda, ya que la hidrólisis de los fosfolípidos protege los ácidos grasos poliinsaturados frente a la oxidación.

A pesar de que los lípidos son el substrato que más ha sido estudiado en lo referente a los fenómenos oxidativos en el jamón, no debe olvidarse que las proteínas y los aminoácidos también pueden sufrir procesos oxidativos, por lo que se le debería prestar mayor atención debido a las implicaciones que puede tener tanto para la salud como para la calidad (Estévez & Luna, 2017).

El proceso de oxidación en el jamón se da fundamentalmente en superficie, se inicia durante la salazón, al final de la cual se puede percibir un olor a carne salada, y aumenta de forma importante durante el reposo y primeras fases del secado, en que aparecen notas rancias evidentes en el exterior de las piezas. La lipólisis es rápida durante los primeros seis meses y después disminuye hacia el final del proceso (Narvaez-Rivas et al., 2008), tanto en el tejido adiposo como en el muscular. En el tejido adiposo la lipólisis afecta de forma más importante a los tri-

glicéridos que contienen linoleico, como el POL (Coutron-Gambotti & Gandemer, 1999), ya que están en estado líquido a diferencia de la mayoría de triglicéridos de la grasa de cerdo que son sólidos (Davenel, et al., 1999), mientras que, en el músculo, a pesar de que tanto los triglicéridos como los fosfolípidos contribuyen al contenido de ácidos grasos libres, en general los fosfolípidos contribuyen de forma más importante (Gandemer, 2009). Además, los fosfolípidos contienen elevadas cantidades de ácidos grasos insaturados y son el principal substrato de la oxidación lipídica en el músculo. El contenido de ácidos grasos en los fosfolípidos se ve poco afectado por la genética y la alimentación de los animales, lo cual sugiere que la sensibilidad a la oxidación debida a la composición en ácidos grasos de la grasa intramuscular, en general, está poco afectada por el origen de la carne (Gandemer, 2009).

En la grasa subcutánea más interna de los jamones sometidos a un proceso de maduración prolongado, una vez que se han recortado las partes externas enranciadas, se percibe una nota que se relaciona con la grasa curada ("añeja"). En el jamón se considera positiva la presencia de dicha nota añeja. Esta nota es más común en jamones de corte "V" que han estado sometidos a una HR baja durante el postsalado (Arnau et al., 2006), y sometidos a un proceso de larga curación en los que se ha producido una oxidación de la grasa superficial (Garcia-Gil et al., (2012), o en los que se les aplicó grasa ibérica fundida en superficie (Sánchez-Molinero & Arnau, 2014). Un ligero sabor rancio se considera aceptable, y positivo para muchos consumidores. Sin embargo, una intensidad elevada se considera un defecto. Este defecto se encuentra en jamones sobremermados o viejos y también en lonchas de jamón que han estado en contacto prolongado con oxígeno, lo cual constituye un problema importante en la comercialización de jamones loncheados envasados al vacío o en atmósfera modificada. Para reducir este problema es conveniente minimizar el contacto con el aire del jamón deshuesado (envasarlo lo antes posible, especialmente si es sin nitrificante), evitar el contacto con oxígeno una vez loncheado (e.g. en las paradas), utilizar films alta barrera al oxígeno, reducir la iluminación del jamón (e.g. material opaco o impreso), reducir el contenido de oxígeno residual en el interior del envase hasta valores inferiores al 0,15% mediante un vacío elevado o combinación

vacío/adición de gas/vacío, utilizar el menor espacio de cabeza posible (baja relación gas/jamón) e incorporar agentes antioxidantes (en el pienso o en el producto) o aromas que enmascaren las notas rancias desagradables. En los envases con atmósfera modificada de loncheados finos es más difícil tener un buen nivel de vacío que en los de loncheado estándar. La generación de productos de reacción de Maillard y péptidos antioxidantes también puede ayudar a frenar la oxidación.

3.6 Flavor metálico

El flavor metálico que se observa en algunos jamones es análogo al de una solución acuosa de sulfato ferroso, que incluye sensaciones en boca, olfativas retronasales (estas son debidas a una oxidación lipídica rápida en boca catalizada por hierro u otros metales (Stevens et al., 2006; Ömür-Özbek et al., 2012) v guizás trigeminales (Skinner et al., 2017). El ion ferroso (Fe2+) causa un elevado flavor metálico, seguido de los iones cúprico (Cu2+) y cuproso (Cu+), mientras que el ion férrico (Fe3+) no causa sensación metálica (Ömür-Özbek et al., 2012). Los umbrales de percepción van de 0,1 hasta > 10 mg/L (de 1,57 a > 157 μ M) para el ion Cu2+ y de 0,003 hasta 3 mg/L (de 0,054 hasta 53,7 µM) para el ion Fe2+. La capacidad de algunos agentes quelantes en la disminución o eliminación de la sensación metálica apoya la idea de que algunos de dichos metales son responsables de la oxidación lipídica en la cavidad bucal.

El flavor metálico es conocido especialmente en calidad del agua y como una forma de disgeusia, y se ha estudiado desde la perspectiva del hierro no hémico. A pesar de que hay pocos datos científicos que asocien el flavor metálico al grupo hemo, parece que este grupo puede ser importante en el desarrollo del flavor metálico (Gerhard, 2020).

El flavor metálico es frecuente en productos de corta curación y en las zonas más húmedas del jamón. La oxidación del hierro ferroso a hierro férrico a lo largo del proceso (Grossi et al., 2014) podría explicar la tendencia a disminuir al aumentar el tiempo de curación. Garcia-Gil et al. (2012) encontraron, en jamones a los que se les practicó el corte V o se prensaron antes del salado, una reducción del flavor metálico en el músculo biceps femoris, pero no se encontraron diferencias en el músculo semimembranosus. Sánchez-Molinero y Arnau (2010) observaron una mayor intensidad de esta nota en jamones

con corte V elaborados en una atmósfera de nitrógeno (> 95,5%), en los cuales los fenómenos oxidativos tuvieron lugar en menor intensidad que en los secados al aire. Gou *et al.* (2008) encontraron un aumento del sabor metálico al disminuir el tiempo de salado.

Por otra parte, no se han encontrado datos del impacto de la adición o no de nitrificantes en el sabor metálico. Hay que tener en cuenta que en los jamones no nitrificados existe una cierta concentración de hierro ligada al grupo hemo (más elevada en jamones de pH elevado), y también cierta concentración de hierro que ha quedado libre (más elevada a pH bajo) por acción de la enzima ferroquelatasa, y que posteriormente ha sido sustituida por zinc (Bou et al., 2020). La acción sobre la sensación metálica del Fe²+ podría verse disminuida al oxidarse a Fe³+.

Se ha observado que la composición de los materiales de los cubiertos puede tener un impacto en la percepción de los alimentos (Piqueras-Fiszman et al., 2012); por tanto, es conveniente utilizar cuchillos y elementos de corte que no aumenten el sabor metálico y que, en general, no afecten negativamente a las características sensoriales del jamón. Así, por ejemplo, una elevada abrasión de los elementos de corte de las loncheadoras puede aumentar el flavor metálico, por lo que es conveniente que al lonchear el jamón tenga un secado homogéneo, no esté excesivamente congelado, no haya precipitados de fosfatos en el producto (ver 1.9.2) y que las cuchillas estén bien afiladas y se limpien a menudo.

3.7 Falta de aroma

La falta de aroma a jamón se observa en piezas con poca sal, sometidas a temperaturas de secado bajas, tiempos de curación cortos y también cuando se conserva el producto durante mucho tiempo en congelación, especialmente sin envasar, lo cual facilita la pérdida de componentes volátiles responsables del aroma. En jamón ibérico la falta de aroma se asocia a la falta de tiempo de bodega (Ruiz et al., 1998), lo cual se puede extrapolar a otros tipos de jamones si dicha falta de aroma es en la parte interna del producto.

En el proceso de envasado al vacío se produce una pérdida importante de volátiles, la cual aumenta con la intensidad de vacío y su duración. Por otra parte, en el envasado en atmósfera protectora se detecta una mayor pérdida de aroma que cuando



Imagen 61a. Aspecto de un jamón de macho.

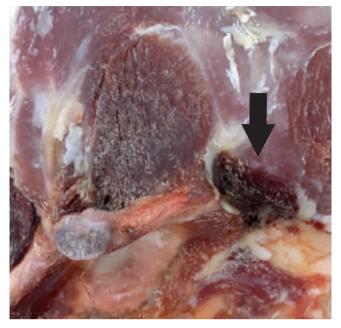


Imagen 61b. Aspecto de un jamón de macho (raíz del pene rodeada de restos del músculo isquiocavernoso).

se envasa al vacío. En las lonchas muy finas, la elevada superficie de contacto con el aire facilita la pérdida de volátiles responsables del aroma, por lo que se recomienda un consumo rápido una vez abierto el envase.

En las zonas superficiales, cuando se secan mucho, se produce la migración de las substancias sápidas solubles en agua a las zonas internas más húmedas (e.g. aminoácidos), por lo que se produce una pérdida de sabor en superficie.

Para evitar pérdidas y cambios del flavor, se recomienda utilizar películas de alta barrera tanto al oxígeno (menor de 1 ml/m²/24 h) como al vapor de agua (menor 1 g/m²/24 h). Con estas permeabilidades se puede llegar a fechas de consumo preferente de 2-4 meses para el envasado en MAP (20% $\rm CO_2/80\%~N_2)$ y de 6 meses en el envasado a vacío. En el caso de los deshuesados y bloques (centros), se puede llegar a una fecha de consumo preferente de 8 meses. En todos los casos bajo refrigeración (0 °C a 3 °C) (Ventanas et al., 2016).

3.8 Notas procedentes de la materia prima

3.8.1 Olor/flavor a cerdo-cuadra

El flavor a cerdo/cuadra es similar al de los cerdos vivos. Se detecta con mayor frecuencia en jamones

de corta curación y en zonas cubiertas por piel, como la zona del codillo, mientras que en la zona de la punta se nota menos. La sal reciclada que haya sido usada para la salazón de piezas con pezuña podría contribuir a aumentar este problema. En la zona del codillo este flavor es más intenso, ya que además de estar cubierto por la piel tiene una mayor relación superficie/volumen que la maza y menor presencia de notas añejas que enmascaran dicho problema. Los procesos de oxidación que tienen lugar durante el secado reducen este flavor. Así, por ejemplo, Sánchez-Molinero y Arnau (2010) observaron una mayor intensidad de esta nota en jamones secados en una atmósfera con un contenido reducido de oxígeno que en los secados al aire. Por otro lado, la adición al inicio del proceso, antes de envasar al vacío o durante el loncheado mecánico de algunos aromas comerciales disminuye esta nota.

3.8.2 Olor/flavor sexual

El olor sexual (producido por 5α-androst-16-en-3-ona) y el olor fecal (producido por escatol) se presentan en algunos jamones procedentes de machos enteros (**imágenes 61a, b**) (Arnau *et al.*, 1986; Diestre *et al.*, 1990; Font-i-Furnols, 2012), especialmente si se calientan (e.g. fritura, horneado...). La mejor solución para evitarlo es utilizar animales castrados y hembras.

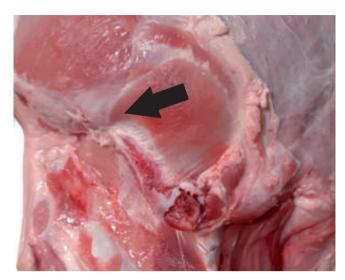


Imagen 61c. Aspecto de un jamón de hembra.

3.8.3 Carne cruda

Las notas de carne cruda se presentan cuando los procesos de lipólisis, proteólisis, crecimiento de microbiota interna y externa, oxidación y otras reacciones producidas durante la maduración han sido insuficientes para aportar el flavor a curado deseado. Es una nota que está más presente en las partes internas, y se elimina aumentando el tiempo de curación. En jamones de corta curación, la adición de aromas y especias puede ayudar a enriquecer el perfil gustativo-aromático del producto y enmascarar la nota de carne cruda.

3.8.4 Pelo quemado

La nota de pelo quemado puede proceder de una limpieza insuficiente de la piel tras el chamuscado.

3.8.5 Origen patológico

Olor a acetona (acetonemia), olor a orina (nefritis, hidronefritis, oclusión de uretra y animales que han permanecido mucho tiempo en ayunas), sabores amargos y fecales (ictericia), olor halitoso (carnes febriles).

3.8.6 Origen alimenticio o medicamentoso

Olor a pastel debido a la presencia de condimentos en el pienso, olor a pescado debido a la alimentación con harinas de pescado, olor a lana o cordero producido por la administración de subproductos, etc. Debe evitarse administrar medicamentos que contengan substancias que puedan conferir olor desagradable: cloroformo, aceite de trementina, yodo, ácido fénico... (Arnau, 1987).

3.9 Notas desarrolladas durante el proceso

3.9.1 Moho

Los mohos pueden dar lugar a notas agradables como la de champiñón (1-octen-3-ol) (García et al., 1991), pero en ocasiones pueden producir substancias con olores desagradables que pueden llegar provocar que el jamón no sea comercializable. Estos olores se producen si se realiza el proceso a humedad elevada (HR superior al 80%). Es por tanto recomendable mantener la HR baja de forma que se evite el crecimiento de moho hasta que el jamón no esté enmantecado, y colgar los jamones evitando contacto entre ellos o con las estructuras de soporte para evitar microambientes húmedos. El crecimiento de mohos en el interior del hueso coxal puede afectar negativamente a los músculos advacentes: este problema ha sido descrito en el jamón de Parma como olor a ácido fénico debido al crecimiento de Penicillium commune (Spotti et al., 1988; Baldini & Spotti, 1995). Para evitarlo, es recomendable desinfectar el ambiente antes de llenar los secaderos. mantener una solución saturada de sal en la zona del hueso durante el salado, disminuir la humedad ambiental, evitar condensaciones de agua al aumentar la temperatura en distintas fases del proceso, usar conservantes antifúngicos superficiales y evitar HR elevada (HR > 85%) especialmente en las fases del proceso que cursan a temperatura elevada.

3.9.2 Bodega húmeda

Mientras que el aroma que recuerda a las bodegas de jamón serrano o ibérico se considera positivo, el aroma a bodega húmeda se considera negativo. El aroma a bodega húmeda es fruto de la formación de coqueras (ver 1.13) y su problemática aumenta con el tiempo de curación si no se efectúa una protección adecuada con grasa. También se observa cuando se produce el crecimiento de determinados mohos en condiciones de HR y temperatura elevadas.

3.9.3 Picante

La sensación picante es una característica esencial de algunos alimentos (e.g. cebolla, mostaza, pimienta, pimentón picante,..). El sentido responsable de la sensación picante, que a menudo se lo denomina "sentido químico", es un sistema sensorial relacionado con el

nervio trigeminal. Este sistema sirve para detectar sensaciones de irritación, dolor, calor y frío. La estimulación del nervio trigeminal en la boca o en la nariz se produce por diversas substancias como la capsaicina, el alil isotiocianato, la piperina, el CO₂... Los ácidos y la sal a alta concentración también estimulan el nervio trigeminal. La contribución de la sensación picante a la aceptabilidad de los alimentos depende, entre otros, de la sensibilidad de la persona, de los rasgos de personalidad y de la tradición culinaria.

En el jamón curado, mientras que la sensación picante en boca y garganta se puede considerar una característica deseable si es ligera, ya que se relaciona con jamones de larga curación, se considera indeseable cuando es elevada (Morales et al., 2013) o si la sensación picante se percibe a través de la olfacción directa. No se han encontrado estudios en que se determinen los compuestos responsables de la sensación picante en boca/garganta, y los estudios sobre substancias volátiles que contribuyen al olor picante son limitados (Berdagué et al., 1993; García-González et al., 2008; Carapiso et al., 2002; Wang et al., 2021).

La sensación picante puede verse afectada por los ingredientes y el proceso de curación del jamón.

- i) Materias primas e Ingredientes:
 - El tipo de materia prima podría afectar a dicha sensación, aunque no se han encontrado estudios científicos que lo evalúen. El contenido de grasa, su grado de insaturación y su grado de oxidación podrían ser los responsables de que se perciba más en jamón ibérico (Olmos, A. y Olmos, J. V., comunicación personal).
 - Contenido de sal: al aumentar el contenido de sal se ha observado un incremento de la sensación picante (Costa-Corredor et al., 2009; Gou et al., 2008), probablemente debido a la acción irritante que produce un elevado contenido de sal (Carstens et al., 2002). Sin embargo, no debe confundirse el picante con el sabor salado. La irritación bucal constituye uno de los factores de fatiga sensorial que limitan el aumento del número de muestras o de sesiones en los paneles de evaluación sensorial de jamón curado.
 - Especias: la adición de especias como la pimienta negra puede contribuir a aumentar la sensación picante en aquellos productos a los que se les añada en elevada cantidad.

ii) Proceso:

La sensación picante aumenta al aumentar el tiempo de curación. Arnau et al. (1997a) indicaron que este atributo era más frecuente en aquellos jamones que habían sido sometidos a una temperatura superior durante el último mes de proceso, y Arnau et al. (2006) observaron que este atributo presentaba una intensidad superior en jamones en los que el reposo se hizo a una HR de 80-85 % respecto de aquellos en que se hizo a 75-80 %. Por otra parte, en productos envasados al vacío que se mantengan a temperatura ambiente, la sensación picante suele aumentar. Así pues, parece que reducir el crecimiento microbiano superficial durante el reposo/secado y comercialización, y disminuir la temperatura de secado y de almacenamiento del producto final podrían ser formas de reducir la intensidad del atributo picante.

3.9.4 Floral

El olor floral es un olor atípico frecuente que lo pueden generar algunas bacterias lácticas (Sánchez-Molinero & Arnau, 2008). Es una nota que se intensifica al cabo de unas horas de cortar el jamón y no se considera típica de los jamones tradicionales españoles.

Uno de los compuestos responsables es el fenilacetaldehido, que deriva de la descarboxilación oxidativa del aminoácido fenilalanina producida por algunos microorganismos (Berdague et al., 1991). Se ha observado experimentalmente que la incidencia aumenta en procesos en los que se añaden cultivos iniciadores y se efectúa el reposo a HR elevada (Sánchez-Molinero & Arnau, 2008), cuando se daña la estructura (e.g. si se efectúan muchos controles con sondas), en jamones reestructurados, reposos muy húmedos y contenido reducido de sal, y disminuye la incidencia si se usan nitritos, se alarga el período de reposo a baja temperatura, con postsalados secos o se trata por alta presión.

Por lo tanto, para reducir este problema se recomienda no dañar la estructura (punciones, cortes, desgarros...) para minimizar la entrada de microorganismos, reducir la contaminación superficial, utilizar nitrito, evitar trabajar en condiciones de HR elevadas para frenar la formación de remelo, lonchear y envasar a a_w suficientemente baja para frenar el crecimiento de microorganismos en el interior del envase y tratar por alta presión.

Imagen 62. Sal de salazón rosada debido al crecimiento de microorganismos halófilos.

3.9.5 Pienso/tostado

En jamones de larga curación tratados con cultivos iniciadores (Sánchez-Molinero & Arnau, 2008) se ha observado un olor y flavor similar al que presentan algunos tipos de pienso. Dicha nota junto con un olor/flavor a tostado también se ha observado en jamones que han sufrido una elevada proteólisis en superficie. Sánchez-Molinero & Arnau (2014) observaron una reducción de la nota olor a pienso y del olor a tostado en el músculo semimembranosus al aplicar grasa fundida de cerdo ibérico. La reacción de Maillard puede ser una de las responsables de las notas tostadas defectuosas. Esta reacción se ve afectada por la composición (azúcares reductores, aldehídos, aminoácidos...), por la a_w superficial (mayor reactividad entre 0,6 y 0,9), por un pH y temperatura elevados y por la presencia de metales como el hierro, y puede verse modificada por la microbiota de superficie, la grasa exudada y el tipo y la cantidad de grasa añadida. Por otra parte, durante el procesado del jamón se pueden producir productos de la reacción de Maillard, a partir de aminoácidos y aldehídos, que contribuyan positivamente al aroma final del jamón. En dicho proceso, se considera que la temperatura y la a_w juegan un papel importante (Ventanas et al., 1992; Li et al., 2021).

Finalmente, se han encontrado jamones con olores tostados con elevados recuentos de bacterias áci-

do-lácticas heterofermentativas. La inoculación de dicha microbiota en jamones antes del salado permitió reproducir dicho problema, que tan solo se presentó en los jamones inoculados.

3.9.6 Olor a tierra

Olor producido por *Penicillium frequentans Westling* (Dragoni *et al.*, 1992).

3.9.7 Olor a patata

Olor debido a la 2-metox-3-isopropilpirazina que es producida por *Pseudomonas cepacia* (Blanco *et al.*, 1994).

3.9.8 Avinagrado

Olor que recuerda al vinagre, ocasionado principalmente por ácido acético. Puede producirse por el crecimiento de bacterias lácticas o adición de acetato, diacetato o ácido acético.

3.9.9 Agrio

Olor y flavor con notas ácidas, ligeramente irritantes y que recuerda a diversos ácidos orgánicos y tiene origen microbiano.

3.9.10 Amoníaco

Olor y flavor que recuerda al amoníaco. Se produce cuando el pH superficial es elevado, hay un crecimiento importante de mohos en superficie y está almacenado en condiciones de humedad elevada, o hay contacto de unas piezas con otras o con estructuras de soporte.

3.9.11 Afrutado

Olor y flavor asociado a diferentes frutas maduras (p.ej. piña, melón, ...). No se la considera una nota típica de los productos tradicionales españoles, disminuye la calidad si se convierte en la nota dominante. Sánchez-Molinero y Arnau (2008) lo observaron a los 120 días en jamones a los que se añadieron cultivos iniciadores, pero no lo detectaron al final del proceso. Barbieri et al. (1992) y Careri et al. (1993) observaron un alto contenido de ésteres en la fracción volátil que lo asociaron a un aroma afrutado agradable en el jamón de Parma.

3.9.12 Cemento/plasma deshidratado

Olor similar al del plasma deshidratado/cemento. Es más común en la articulación coxofemoral debido a la deshidratación del líquido sinovial presente en dicha zona. Este olor recuerda al que se produce al degradarse la betaína (trimetilglicina). Para disminuir la cantidad de líquido sinovial se recomienda mejorar el manejo de los animales durante el transporte, carga y descarga y antes del sacrificio (Ver 1.2.7).

3.9.13 Hierba

Olor a hierba recién cortada, similar al olor del hexanal. Se asocia a la oxidación de la grasa.

Según Morales & Aparicio (1999), el hexanal a altas concentraciones tiene olor a grasa rancia y a bajas concentraciones tiene olor a hierba y vegetal.

3.9.14 Confinado

El olor a confinado se nota al abrir el envase y recuerda al de espacios poco ventilados, distinto de la nota a bodega húmeda. Una vez que el producto se ha ventilado el olor deja de notarse.

3.9.15 Salmuera

El olor a salmuera se detecta a veces en jamones en los que la salazón se realiza sumergiéndolos en una salmuera, tal como se hace en algunos países del centro de Europa.

3.9.16 Olor a pies

Debido al crecimiento de microorganismos halófilos en la sal de salazón húmeda cuando se somete a temperatura superior a 7 °C (**imagen 62**), o en la superficie de zonas del jamón muy saladas sometidas a HR > 75 °C durante el secado (**imagen 43d, e**).

3.9.17 Flavor a viejo en productos envasados al vacío

Nota de olor asociada a jamones viejos. En jamones envasados al vacío durante varios meses se origina una nota desagradable cuya formación se acelera con la temperatura. Para optimizar la calidad del flavor hasta el fin de la vida comercial de los loncheados, se recomienda el lavado con agua caliente para eliminar la mayor parte de la microbiota superficial productora de gas y flavores anómalos, y el secado posterior de los jamones previo al deshuesado, para no incorporar humedad al producto. También es recomendable que las piezas a lonchear tengan una $a_w \le 0,92$ en el interior, y no utilizar piezas pasadas de curación o defectuosas (Ventanas $et\ al., 2016$).

4. Conclusiones

De lo anteriormente expuesto se desprende que los problemas que presenta el jamón curado se pueden reducir fundamentalmente mediante una apropiada selección de la materia prima y la adecuación de los procesos de transformación, envasado y conservación a dicha materia prima.

5. Bibliografía

- Amoah, B., Schilling, M. W. & Phillips, T. W. (2016).
 Monitoring Tyrophagus putrescentiae (Acari: Acaridae)
 With Traps in Dry-Cured Ham Aging Rooms. Environmental Entomology, 45(4), 1029-1039. doi:10.1093/ee/nvw059
- Andrade, M., Rodas, E., Durbán, A., Moya, A. & Córdoba, J. J. (2012). Characterization and control of microbial black spot spoilage in dry-cured Iberian ham. Food Control, 23(1), 128-136.
- Andújar, G. & Tarrazo, J. (1981). The rate of penetration of salt into meat. Fleischwirtschaft, 61(9), 1366-1367.
- Arnau, J. (1987d). Defectos en el jamón curado: otras alteraciones. In IRTA (Ed.), *Jamón Curado: Aspectos Téc*nicos (pp. 203-207). Girona, Spain: GRAFIS-SANT, S.A.
- Arnau, J. (1993). Tecnología de elaboración del jamón curado. *Microbiología SEM* (9), 3-9.
- Arnau, J. (2011). Control de ácaros por métodos compatibles con la calidad del jamón, VI Congreso Mundial del Jamón. Lugo, Spain.
- Arnau, J. (2013). Principales problemas tecnológicos en la elaboración del jamón curado. eurocarne, 216, 60-98.
- Arnau, J., Comaposada, J., Gou, P., Serra, X., Fulladosa, E. & Muñoz, I. (2011a). Procedimiento de elaboración de piezas de productos cárnicos crudos curados de músculo entero. N. de solicitud: P201131619.
- Arnau, J., Diaz, I., Garcia-Regueiro, J. A., Hortós, M. & Casademont, G. (1986). Influence of boar taint in organoleptic characteristics of Spanish cured ham, 32nd European Meeting of Meat Research Workers (Vol. 2, 311-312). Ghent, Belgium.
- Arnau, J. & Garriga, M. (1993). "Black spot" in cured meat products. ("Black spot" bei Pökelfleischprodukten). Fleischwirtschaft, 73(12), 1393-1394 (english) and 1412-1413 (german).
- Arnau, J. & Garriga, M. (2000). The effect of certain amino acids and browning inhibitors on the "black spot" phenomenon produced by Carnimonas nigrig-

- icans. Journal of the Science of Food and Agriculture, 80(11), 1655-1658.
- Arnau, J. & Gou, P. (2001). Effect of air relative humidity on ham rind and subcutaneous salted fat during the resting period. *Meat Science*, 58(1), 65-68.
- Arnau, J., Gou, P. & Alvarez, F. (2002). White precipitates formed on the surface of "chorizo", 48th International Congress of Meat Science and Technology ICoMST 2002 (Vol. I, 300-301). Rome, Italy.
- Arnau, J., Gou, P. & Comaposada, J. (2003a). Effect
 of the relative humidity of drying air during the resting
 period on the composition and appearance of drycured ham surface. *Meat Science*, 65(4), 1275-1280.
- Arnau, J., Gou, P. & Guerrero, L. (1994). The efeccts
 o freezing, meat pH and storage temperature on the
 formation of white film and tyrosine crystals in drycured hams. *Journal of the Science of Food and Agri-*culture, 66(3), 279-282.
- Arnau, J., Guàrdia, M. D., Guerrero, L. & Claret, A. (2011b). Propuesta de guía metodológica para la evaluación sensorial de jamón curado de cerdo blanco, SENSOJAM PROJECT RTA2006-00060-00-00. Barcelona: IRTA, INIA. http://eurocarne.com/daal/a1/boletin_imagenes/a2/guia-metodologica.pdf
- Arnau, J., Guàrdia, M.D., Gratacós, M., Fernández, M., Hierro, E., Roncales, P., Carballo, J. Villegas, B., Ruiz, J. & Sanjuan, N. (2013). Implicaciones de la reducción de los niveles de uso de nitratos y nitritos en la seguridad, conservación, características sensoriales y modificaciones tecnológicas de los productos cárnicos crudos-curados. Pp. 67-79. En: "Avances en la producción de elaborados cárnicos seguros y saludables". Ordóñez, J.A., Jiménez-Colmenero, F. & Arnau, J. Coordinador: Salvà, LL. Consolider Carnisenusa. ISBN: 978-84-86469-48-1. https://www.recercat.cat/bitstream/handle/2072/2239 79/Arnau_2013%20Implicaciones%20de%20la%20re ducción.pdf?sequence=1
- Arnau, J., Guàrdia, M.D., Guerrero, L. & Gou, P. (2006). Effect of relative humidity of drying air during the resting period on the appearance, texture and flavour of dry-cured hams. 52nd ICoMST, 605-606.
- Arnau, J., & Guerrero, L. (1994). Physical methods of controlling mites in dry-cured ham. *Fleischwirtschaft*, 74(12), 1311-1313 (english) and 1334-1336 (german).
- Arnau, J., Guerrero, L., Casademont, G. & Gou, P. (1995). Physical and chemical changes in different zones of normal and PSE dry cured ham during processing. Food Chemistry, 52(1), 63-69.

- Arnau, J., Guerrero, L. & Gou, P. (1997a). Effects of temperature during the last month of ageing and of salting time on dry cured ham aged for six months. *Journal* of the Science of Food and Agriculture, 74(2), 193-198.
- Arnau, J., Guerrero, L. & Gou, P. (1997b). Kristallisation von Phosphaten in Fleischproducten (The precipitation of phosphates in meat products). Fleischwirtschaft, 77(10), 923-925.
- Arnau, J., Guerrero, L. & Gou, P. (2003b). Effect of meat pH and the amount of added nitrite and nitrate on colour uniformity of dry-cured hams. Fleischwirtschaft International, 1, 31-32.
- Arnau, J., Guerrero, L., Hortós, M. & García-Regueiro, J. A. (1996). The composition of white film and white crystals found in dry-cured hams. *Journal* of the Science of Food and Agriculture, 70(4), 449-452.
- Arnau, J., Guerrero, L. & Sárraga, C. (1998). The effect of green ham pH and NaCl concentration on cathepsin activities and the sensory characteristics of dry-cured hams. *Journal of the Science of Food and Agriculture*, 77(3), 387-392.
- Arnau, J. & Hugas, M. (1987). Defectos en el jamón curado: jamones ácidos y putrefactos. In IRTA (Ed.), Jamón Curado: Aspectos Técnicos (pp. 135-142). Girona, Spain: GRAFIS-SANT, S.A.
- Arnau, J., Hugas, M., García-Regueiro, J. A. & Monfort, J. M. (1987a). Precipitado de tirosina en la superficie de corte del jamón curado. Rev. Agroquímica y Tecnología de los Alimentos, 27(3), 398-404.
- Arnau, J., Hugas, M. & Monfort, J. M. (1987b). Los parásitos del jamón curado: el saltón. In IRTA (Ed.), Jamón Curado: Aspectos Técnicos (pp. 237-238). Girona, Spain: GRAFIS-SANT, S.A.
- Arnau, J., Hugas, M. & Monfort, J. M. (1987c). Medidas preventivas para la lucha contra los parásitos del jamón curado. In IRTA (Ed.), Jamón Curado: Aspectos Técnicos (pp. 215-219). Girona, Spain: GRAFIS-SANT, S.A.
- Arnau, J., Maneja, E., Guerrero, L. & Monfort, J.
 M. (1993). Phosphate crystals in raw cured ham. Bildung yon Phosphatkristallen bei Rohschinken.
 Fleischwirtschaft, 73(8), 859-860 (english) and 875-876 (german).
- Asensio, M.A. (2016). Jornada ANICE PROCARSE.
 "Seguridad microbiológica e Higiene de los productos cárnicos": Control de ácaros en derivados cárnicos curado-madurados. http://procarse.chil.me/down-load-doc/122924
- Baldini, P., Campanini, M., Pezzani, G. & Palmia,
 F. (1984). Réduction de la quantité de chlorure de so-

- dium employé dans les produits séchés. *Viandes et Produits Carnés*, 5(3), 83-88.
- Baldini, P. & Spotti, E. (1995). Importanza della fase di preriposo sulla probabilità di ritrovare odori estranei (acido fenico) in prosciutti stagionati. *Industria Con*serve, 70(4), 418-422.
- Barat, J. M., Vidal-Brotóns, D., López-Pascual, E. & Gras, M. L. (2006). Quantification and kinetics of the residual brine generation during ham and shoulder pile salting. *Meat Science*, 73(4), 576–580. doi:10.1016/j.meatsci.2006.02.010.
- Barbieri, G., Bolzoni, L., Parolari, G., Virgili, R., Buttini, R., Careri, M. & Mangia, A. (1992). Flavor compounds of dry-cured ham. *Journal of Agricultural* and Food Chemistry, 40(12), 2389-2394.
- Bartholomew, D. T. & Blumer, T. N. (1977). The use of a commercial *Pediococcus cerevisiae* starter culture in the production of country-style hams. *Journal of Food Science*, 42(2), 494-497.
- Becker, E. M., Westermann, S., Hansson, M. & Skibsted, L. H. (2012). Parallel enzymatic and nonenzymatic formation of zinc protoporphyrin IX in pork. Food chemistry, 130(4), 832-840.
- Berdagué, J. L., Bonnaud, N., Rousset, S., & Touraille, C. (1993). Influence of pig crossbreed on the composition, volatile compound content and flavour of dry cured ham. *Meat Science*, 34(1), 119-129.
- Berdague, J. L., Denoyer, C., Le Quere, J. L. & Semon, E. (1991). Volatile components of dry-cured ham. *Journal of Agricultural and Food Chemistry*, 39(7), 1257-1261.
- Blanco, D., Barbieri, G., Mambriani, P., Spotti, E.
 & Barbuti, S. (1994). Studio sul "Difetto di patata" nel prosciutto crudo stagionato. *Industria Conserve*, 69(3), 230-236.
- Blanco, D., Arino, A., Conchello, P., Perez, C., Yamguela, J. & Herrera, A. (1997). Physico-chemical Characterization of "Bone Taint" in Spanish Dry-cured Hams. *Journal of Food Protection*, 60(6), 667-672.
- Boadas, C., Gou, P., Valero, A. & Arnau, J. (2000).
 Changes in different zones of dry-cured ham during drying. Moisture and sodium chloride content. Fleischwirtschaft International, 4, 45-48.
- Bondoc, L. & Timkovich, R. (1989). Structural characterization of nitrimyoglobin. *The J. of Biological Chemistry*, 264(11), 6134-6145.
- Bou, R., Llauger, M., Arnau, J. & Fulladosa, E. (2018). Zinc-protoporphyrin content in commercial Parma hams is affected by proteolysis index and mar-

- bling. Meat science, 139, 192-200.
- Bou, R. Llauger, M., Arnau, J., Olmos, A. & Fulladosa, E. (2020). Effects of post mortem pH and salting time on Zinc-protoporphyrin content in nitrite-free Serrano dry-cured ham. Food Res. Int. 133. https://doi.org/10.1016/j.foodres.2020.109156.
- Bou, R., Llauger, M., Arnau, J., Olmos, A., & Fulladosa, E. (2021). Formation of Zn-protoporphyrin during the elaboration process of non-nitrified serrano dry-cured hams and its relationship with lipolysis. Food Chemistry, 131730.
- Breslin, P. A. (2013). An evolutionary perspective on food and human taste. *Current Biology*, 23(9), R409-R418.
- Brown, K.L. & Holah, J.T. (2006). Guidelines for preventing hair contamination of food. No 48. Campdem & Chorleywood Food Research Association Group. ISBN: 0905942779.
- Buscailhon, S., Berdagué, J. L., & Monin, G. (1993).
 Time-related changes in volatile compounds of lean tissue during processing of French dry-cured ham. *Journal of the Science of Food and Agriculture*, 63(1), 69-75.
- Buscailhon, S., Berdague, J. L., Gandemer, G., Touraille, C. & Monin, G. (1994). Effects of initial pH on compositional changes and sensory traits of French dry-cured hams. *Journal of Muscle Foods*, 5(3), 257-270.
- Butz, R. G., Blumer, T. N., Christian, J. A., Swaisgood, H. E. & Lucas, H. L. (1974). Factors responsible for white film formation on cut surfaces of drycured hams. *Journal of Food Science*, 39(3), 516-519.
- Čandek-Potokar, M. & Škrlep, M. (2012). Factors in pig production that impact the quality of dry-cured ham: a review. *Animal*, 6(2), 327-338.
- Cantoni, C., & Chiappa, F. (2011). Batteri produttori di pigmenti blu e chiazzature di alimenti. https://www.otalombardialiguria.it/wp-content/uploa ds/2016/04/Pigmenti-blu_QsA_giugno11.pdf
- Cantoni, C., Stella, S., Comi, G. & Cocolin, L. (2001).
 A new superficial alteration of raw hams: the blue spots. *Industrie Alimentari*, 408, 1226-1229.
- Careri, M., Mangia, A., Barbieri, G., Bouoni, L., Virgili, R. & Parolari, G. (1993). Sensory property relationships to chemical data of Italian-type dry-cured ham. *Journal of Food Science*, 58(5), 968-972.
- Carrapiso, A. I., Ventanas, J., & García, C. (2002).
 Characterization of the most odor-active compounds of Iberian ham headspace. *Journal of Agricultural and Food Chemistry*, 50(7), 1996-2000.

- Carrapiso, A. I., Martín, L., Jurado, Á., & García,
 C. (2010). Characterisation of the most odour-active compounds of bone tainted dry-cured Iberian ham.
 Meat Science, 85(1), 54-58.
- Carrascosa, A. V., Arnau, J., Boadas, C. & Cornejo,
 I. (1997). Alteración del jamón serrano por Serratia Liquefaciens IFI-SL65. eurocarne, 60, 51-55.
- Carrascosa, A. V., Cornejo, I. & Marín, M. E. (1992).
 Distribution of microorganisms on the surface of Spanish dry-cured hams. Fleischwirtschaft, 72(7), 1008-1010.
- Carrascosa, A. V., Marín, M. E., Avendaño, M. C.
 & Cornejo, I. (1988). Jamón Serrano. Cambios microbiológicos y fisicoquímicos durante el curado rápido. Alimentaria, 194, 9-12.
- Carstens, E., Carstens, M. I., Dessirier, J. M., O'Mahony, M., Simons, C. T., Sudo, M., & Sudo, S. (2002).
 It hurts so good: oral irritation by spices and carbonated drinks and the underlying neural mechanisms.
 Food Quality and Preference, 13(7-8), 431-443.
- Cilla, I., Martínez, L., Beltrán, J. A. & Roncalés, P. (2006). Dry-cured ham quality and acceptability as affected by the preservation system used for retail sale. *Meat Science*, 73(4), 581-589.
- Clariana, M., Gratacós-Cubarsí, M., Hortós, M., García-Regueiro, J. A., & Castellari, M. (2010). Analysis of seven purines and pyrimidines in pork meat products by ultra high performance liquid chromatography—tandem mass spectrometry. *Journal of Chromatography A*, 1217(26), 4294-4299.
- Comaposada, J., Gou, P. & Arnau, J. (2000). The effect of sodium chloride content and temperature on pork meat isotherms. *Meat Science*, 55(3), 291-295.
- Comaposada, J., Arnau, J. y Gou, P. (2002).
 Na₂HPO₄ content effect on sorption isotherms of raw and salted pork at 5 and 26 °C. 13th International Drying Symposium, Beijing (China).
- Comi, G. & Cantoni, C. (1983). Presenza di lieviti nei prosciutti crudi stagionati. *Industrie Alimentari*, 22, 102-104.
- Comi, G., Cantoni, C., Saronni, G. & Denozza, D. (1981). Ipotesi sulla formazione di cristalli di tirosina nei prosciutti crudi da parte dei lieviti. *Industrie Alimentari*, 20, 879-883.
- Comi, G., Cantoni, C. & Traldi, C. (1982). Attività proteolitica di lieviti isolati da granuli di tirosina di prosciutti crudi stagionati. *Industrie Alimentari*, 22, 524-531.
- Córdoba, J. J., Aranda, E. Y. & Benito, M. J. (2001).
 Alteraciones originadas por microorganismos, ácaros

- e insectos en jamones ibéricos. In J. Ventanas (Ed.), Tecnología del jamón ibérico: de los sistemas tradicionales a la explotación racional del sabor y el aroma (pp. 465-488). Madrid: Mundi-Prensa.
- Costa-Corredor, A., Serra, X., Arnau, J., & Gou, P. (2009). Reduction of NaCl content in restructured dry-cured hams: Post-resting temperature and drying level effects on physicochemical and sensory parameters. *Meat Science*, 83(3), 390-397.
- Coutron-Gambotti, C. & Gandemer, G. (1999). Lipolysis and oxidation in subcutaneous adipose tissue during dry-cured ham processing. *Food Chemistry*, 64(1), 95-101.
- Dabboussi, F., Hamze, M., Elomari, M., Verhille, S., Baida, N., Izard, D., & Leclerc, H. (1999). Pseudomonas libanensis sp. nov., a new specie isolated from Lebanese spring waters. *International Journal of Systematic and Evolutionary Microbiology*, 49(3), 1091-1101.
- Davenel, A., Riaublanc, A., Marchal, P. & Gandemer, G. (1999). Quality of pig adipose tissue: relationship between solid fat content and lipid composition. *Meat Science*, 51(1), 73-79.
- Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Science & Technology, 90, 26-34.
- Diestre, A., Oliver, M. A., Gispert, M., Arpa, I. & Arnau,
 J. (1990). Consumer responses to fresh meat and meat products from barrows and boars with different levels of boar taint. *Animal Production*, 50(3), 519-530.
- Djordjevic, J., Zatorre, R. J. & Jones-Gotman, M. (2004). Odor-induced changes in taste perception. Experimental Brain Research, 159(3), 405-408.
- Dragoni, I., d' Aubert, S. & Cantoni, C. (1992). L'odore di terra. *Industrie Alimentari*, 31, 311-313.
- Escudero, E., Mora, L., Aristoy, M. C., & Toldrá, F. (2011). Possible biological markers of the time of processing of dry-cured ham. *Meat science*, 89(4), 536-539.
- Estévez, M. & Luna, C. (2017). Dietary protein oxidation: a silent threat to human health? *Critical reviews in food science and nutrition*, 57(17), 3781-3793.
- Fikiin, K. A. (1998). Ice content prediction methods during food freezing: a survey of the Eastern European literature. *Journal of Food Engineering*, 38(3), 331-339.
- Flores, J., Bermell, S., Nieto, P. & Costell, E. (1984).
 Cambios químicos en las proteinas del jamón durante los procesos de curado, lento y rápido, y su relación con la calidad. Revista de Agroquímica y Tecnología de Alimentos, 24, 503-509.

- Flores, M., Aristoy, M-C., Spanier, A. M. & Toldra,
 F. (1997a). Nonvolatile components effects on quality of Serrano dry-cured ham as related to processing time. *Journal of Food Science*, 62, 1235-1239.
- Flores, M., Grimm, C. C., Toldrá, F., & Spanier, A.
 M. (1997b). Correlations of sensory and volatile compounds of Spanish "Serrano" dry-cured ham as a function of two processing times. *Journal of Agricultural and Food Chemistry*, 45(6), 2178-2186.
- Flórez, P., Pedregal, E., Botas, M., Olmo, N. & Benezet, A. (2001). Coloración anormal de un embutido por causas microbiológicas. *Alimentaria*, 326, 45-48.
- Font-i-Furnols, M. (2012). Consumer studies on sensory acceptability of boar taint: a review. *Meat Science*, 92(4), 319-329.
- Francisco, J. J., Gutiérrez, L. M., Menes, I., García, M. L., Diez, V. & Moreno, B. (1981). Microbiota microbiana del jamón crudo curado. *Anales de Bromatología*, 33(1), 259-272.
- Frigola, M., & Ayuso, F. (2004). El envasado del jamón curado. In: Conjamón (Ed.), Avances en la ciencia, tecnología y comercialización del jamón (Conjamón 2003. Cáceres). Cáceres.
- Fulladosa, E., Garriga, M., Martin, B., Guardia, M.
 D., Garcia-Regueiro, J. A. & Arnau, J. (2010). Volatile profile and microbiological characterization of hollow defect in dry-cured ham. *Meat Science*, 86(3), 801-807.
- Fulladosa, E., Serra, X., Gou, P. & Arnau, J. (2009).
 Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. *Meat Science*, 82(2), 213-218.
- Fulladosa, E., Villalba, M. P., Navarro, M. T., Viadel, B., Gou, P., Guàrdia, M. D. & Arnau, J. (2013). Reducción del contenido de sal en alimentos. In E. Fulladosa & M. D. Guàrdia (Eds.), Estrategias innovadoras para desarrollar alimentos más saluda-bles –FOODSME-HOP Technology Book (pp. 40-55). Barcelona: MEDIA ACTIVE.
- Gandemer, G. (2009). Dry cured ham quality as related to lipid quality of raw material and lipid changes during processing: a review. Grasas y aceites, 60(3), 297-307.
- Garcia-Gil, N., Muñoz, I., Santos-Garcés, E., Arnau, J. & Gou, P. (2014). Salt uptake and water loss in hams with different water contents at the lean surface and at different salting temperatures. *Meat Science*, 96(1), 65-72.
- Garcia-Gil, N., Santos-Garces, E., Muñoz, I., Fulladosa, E., Arnau, J. & Gou, P. (2012). Salting, drying and sensory quality of dry-cured hams subjected to

- different pre-salting treatments: Skin trimming and pressing. *Meat Science*, 90(2), 386-392.
- García, C., Berdagué, J. J., Antequera, T., López-Bote, C., Córdoba, J. J. & Ventanas, J. (1991).
 Volatile components of dry cured Iberian ham. Food Chemistry, 41(1), 23-32.
- García, C., Martín, A., Timón, M. L. & Córdoba, J. J. (2000). Microbial populations and volatile compounds in the "bone taint" spoilage of dry cured ham. Letters in Applied Microbiology, 30(1), 61-66.
- García-Rey, R. M., Quiles-Zafra, R. & de Castro, M. L. (2006). Relationships of genotype and slaughter time with the appearance and texture of dry-cured hams. Food chemistry, 94(2), 271-277.
- Garriga, M., Ehrmann, M., Arnau, J., Hugas, M. & Vogel, R. F. (1998). Carnimonas nigrificans gen., nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. International Journal of Systematic Bacteriology, 48, 677-686.
- Genchi, G. (2017). An overview on D-amino acids.
 Amino Acids, 49(9), 1521-1533.
- Gerhard, G.S. (2020). Heme as a Taste Molecule.
 Curr. Nutr. Rep., 9, 290–295. https://doi.org/10. 1007/s13668-020-00320-6
- Giró-Candanedo, M., Arnau, J., Gou, P. & Fulladosa, E. (2020). ¿Es posible un etiquetado de precisión de los alimentos?. eurocarne 290, 56-62.
- Gmelin, L. (1971). Gmelins Handbuch der anorganischen Chemie/begründet von Leopold Gmelin achte Auflage begonnen im Auftrage der Deutschen Chemischen Gesellschaft von R.J. Meyer fortgeführt. Edition 8. Weinheim Verlag Chemie.
- Gómez, J., Sanjuán, N., Arnau, J., Bon, J. & Clemente, G. (2017). Diffusion of nitrate and water in pork meat: Effect of the direction of the meat fiber. Journal of Food Engineering, 214, 69-78.
- Gou, P. (2019). Implicaciones tecnológicas de las propiedades térmicas del jamón curado en formato loncheado. X Congreso Mundial del Jamón. Madrid, p. 20.
- Gou, P., Arnau, J. & Guàrdia, M. D. (2000). Efecto del tipo de pulido (con corteza o corte en V) en algunas características sesnsoriales del jamón curado, II Symposium Internacional del Jamón Curado (pp. 100-101). Barcelona, Spain.
- Gou, P., Guerrero, L. & Arnau, J. (1995). Sex and crossbreed effects on the characteristics of dry-cured ham. *Meat Science*, 40(1), 21-31.
- Gou, P., Morales, R., Serra, X., Guàrdia, M. D. & Arnau, J. (2008). Effect of a 10-day ageing at 30 C

- on the texture of dry-cured hams processed at temperatures up to 18 °C in relation to raw meat pH and salting time. *Meat science*, 80(4), 1333-1339.
- Gracia, M. J., Lázaro, R., Pérez-Arquillué, C., Pagán, R., Ramos, S., Garcia, J. L., & Bayarri, S. (2020). High-pressure processing (HPP) of raw and dry-cured ham from experimentally infected pigs as a potential tool for the risk control of Toxoplasma gondii. *Innovative Food Science & Emerging Technologies*, 61, 102315.
- Gratacós-Cubarsí, M., Sárraga, C., Castellari, M., Valero, A., Regueiro, J. G. & Arnau, J. (2013). Effect of pH24h, curing salts and muscle types on the oxidative stability, free amino acids profile and vitamin B2, B3 and B6 content of dry-cured ham. Food chemistry, 141(3), 3207-3214.
- Grèbol, N. (2005). Evaluación del riesgo en las nuevas tecnologías de procesado del jamón curado, *III Con*greso Mundial del Jamón (pp. 123-127). Teruel, Spain.
- Griot, B., Bouyssiere, M., Boulard, J. & Kerisit, R. (1998). Rendements au sechage, au tranchage et qualites gustatives des jambons sel sec. *Techniporc*, 21, 31-36.
- Grossi, A. B., do Nascimento, E. S., Cardoso, D. R.,
 & Skibsted, L. H. (2014). Proteolysis involvement in zinc-protoporphyrin IX formation during Parma ham maturation. Food Research International, 56, 252-259.
- Guerrero, L. & Arnau, J. (1995). Dry cured hams.
 Chemical methods to control mites. Fleischwirtschaft,
 75(4), 449-450 (english) and 482-483 (german).
- Guerrero, L., Arnau, J. & Garriga, M. (1991). Rohschinkenherstellung. Rohstoff-Qualitätskontrolle als Massnahme zur Minderung der Verluste. (Raw ham manufacture - Quality control of raw-material as a means of reducing losses). Fleischwirtschaft, 71(9), 962-964.
- Guerrero, L., Gou, P., Alonso, P. & Arnau, J. (1996).
 Study of the physicochemical and sensorial characteristics of dry-cured hams in three pig genetic types. *Journal of the Science of Food and Agriculture*, 70(4), 526-530.
- Guerrero, L., Gou, P. & Arnau, J. (1999). The influence of meat pH on mechanical and sensory textural properties of dry cured ham. *Meat Science*, 52(3), 267-273.
- Hartley, I. E., Liem, D. G., & Keast, R. (2019). Umami as an 'alimentary' taste. A new perspective on taste classification. *Nutrients*, 11(1), 182.
- Hasan, M.M., Aikins, M.J., Schilling, M.W. & Phillips, T.W. (2021). Sulfuryl fluoride as a methyl bromide alternative for fumigation of *Necrobia rufipes* (Coleoptera: *Cleridae*) and *Tyrophagus putrescentiae*

- (Sarcoptiformes: *Acaridae*), major pests of animal-based stored products. *Journal of Stored Products Research*, 91, Article number 101769.
- Hernández-Cázares, A. S., Aristoy, M. C., & Toldrá, F. (2011). Nucleotides and their degradation products during the processing of dry-cured ham, measured by HPLC and an enzyme sensor. *Meat Science*, 87(2), 125-129.
- Hoogenkamp, H. (1989). Topping it off. *Meat Process*.
 28 (9): 84, 86, 88, 90.
- Hortós, M. (1994). Influencia de la maduración y condiciones del proceso tecnológico en los cambios de las fracciones nitrogenadas del jamón curado. Tesis. Universitat Autònoma de Barcelona, Barcelona.
- Huerta, T. (1986). Aspectos fisico-químicos y microbiológicos del jamón salado por via seca. Tesis. Universidad de Valencia, Valencia.
- Hugas, M. & Arnau, J. (1987a). Aparición de manchas de color marrón en la corteza y grasa del jamón durante el post-salado. In IRTA (Ed.), *Jamón Curado: Aspectos Técnicos* (pp. 179-182). Girona, Spain: GRAFIS-SANT, S.A.
- Hugas, M., & Arnau, J. (1987b). Jamón con coquera.
 In IRTA (Ed.), Jamón Curado: Aspectos Técnicos (pp. 185-188). Girona, Spain: GRAFIS-SANT, S.A.
- Hutter, S., Rüegg, N., & Yildirim, S. (2016). Use of palladium based oxygen scavenger to prevent discoloration of ham. Food Packaging and Shelf Life, 8, 56-62.
- Iacumin, L., Cattaneo, P., Zuccolo, C., Galanetto, S., Acquafredda, A. & Comi, G. (2019). Natural levels of nitrites and nitrates in San Daniele dry cured ham PDO, and in meat, salt and sugna used for its production. *Food Control*, 100, 257-261.
- Jorrín, J., Magallanes, M. & Vargas, P. (2001).
 Etiología de la peste por ácaros en el jamón curado.
 eurocarne 99: 69-74.
- Jurado, A., García, C., Timón, M. L. & Carrapiso, A. I. (2007). Effect of ripening time and rearing system on amino acid-related flavour compounds of Iberian ham. *Meat Science*, 75(4), 585-594. https://doi.org/ 10.1016/j.meatsci.2006.09.006.
- Koohmaraie, M., Kent, M.P., Shackelford, S.D., Veiseth, E. & Wheeler, T.L. (2002). Meat tenderness and muscle growth: is there any relationship? *Meat Science*, 62, 345–352
- Kröckel, L. (2009). Black spots on adipose tissue of pork and beef caused by melanin producing Pseudomonas fluorescens. Fleischwirtschaft, 89(6), 89-92.
- Laugerette, F., Passilly-Degrace, P., Patris, B., Niot,
 I., Febbraio, M., Montmayeur, J.P. & Besnard, P.

- (2005). CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. *J. Clin. Invest.*, 115, 3177-3184.
- Lawrence, G., Salles, C., Septier, C., Busch, J. & Thomas-Danguin, T. (2009). Odour-taste interactions: A way to enhance saltiness in low-salt content solutions. Food Quality and Preference, 20(3), 241-248.
- Leistner, L., & Ayres, J. C. (1968). Molds and meats. Fleischwirtschaft, 48, 62-65.
- Leistner, L., Lücke, F. K., Hechelmann, H., Alberts, R., Hübner, I. & Dresel, J. (1983). Verbot der Nitratpökelung bei Rohschinken. Kulmbach, Germany: Institut für Mikrobiologie, Toxikologie und Histologie der Bundesanstalt für Fleischforschung.
- Li, L., Belloch, C. & Flores, M. (2021). The Maillard Reaction as Source of Meat Flavor Compounds in Dry Cured Meat Model Systems under Mild Temperature Conditions. *Molecules*, 26(1), 223.
- Li, J., Zhang, L., Fu, Y., Li, Y., Jiang, Y., Zhou, G. & Gao, F. (2018). Creatine Monohydrate and Guanidinoacetic Acid Supplementation Affects the Growth Performance, Meat Quality, and Creatine Metabolism of Finishing Pigs. J. Agric. Food Chem., 66(38), 9952–9959.
- Lindsay, D. S., Collins, M. V., Holliman, D., Flick, G. J. & Dubey, J. P. (2006). Effects of high-pressure processing on toxoplasma gondii tissue cysts in ground pork. *Journal of Parasitology*, 92(1), 195-196.
- Lindström, M., Kiviniemi, K., & Korkeala, H. (2006).
 Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. *International Journal of Food Microbiology*, 108(1), 92-104.
- Lo Fiego, D.P., Comellini, M., Ielo, M.C., Tassone, F. & Volpelli, L.A. (2009). Effect of stunning voltaje and scalding method on the incidence of the "red skin" defect of Parma ham. Vet. Res. Commun., 33(suppl 1), S285-S288.
- López, A. (2009). Ámbito ecológico del control de ácaros en el jamón ibérico, V Congreso Mundial del Jamón. Aracena, Spain.
- Lorenzo, P. & Flores, J. (1988). Ein aktuelles Problem ohne zufriedenstellende Lösung: Der Milbenfall bei Rohschinken. Fleischerei, 39(9), 779-782.
- Lorés, A., Pérez-Beriain, T. & Roncalés, P. (2011).
 Formación y estabilidad del color característico de los productos curados. In UNEX & J. A. Ordóñez & J. J. Córdoba & J. Ventanas (Eds.), Productos cárnicos para el siglo XXI. Seguros, nutritivos y saludables (pp. 127-133). Madrid: Pedro Cid, S.A.

- Losantos, A., Sanabria, C., Cornejo, I. & Carrascosa, A.V. (2000). Characterization of *Enterobacteri*aceae strains isolated from spoiled dry-cured hams. Food Microbiology, 17, 505-512.
- Lyons, C. A. P., Bruce, J. M., Fowler, V. R. & English, P. R. (1995). A comparison of productivity and welfare of growing pigs in four intensive systems. *Livestock Production Science*, 43(3), 265-274.
- Lulietto, M. F., Sechi, P., Borgogni, E. & Cenci-Gog, B. T. (2015) Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. *Italian Journal of Animal Science*, 14:3, 4011.
 DOI: 10.4081/ijas.2015.4011.
- Maggi, E., Bracchi, P. G. & Chizzolini, R. (1977).
 Molecular weight distribution of soluble polypeptides from the "Parma county ham" before, during and after maturation. *Meat Science*, 1(2), 129-134.
- M.A.P.A. (2021). Manual evaluación sensorial de jamón y paleta curados.
- Marcone, G. L., Rosini, E., Crespi, E. & Pollegioni,
 L. (2020). D-amino acids in foods. *Applied Microbiology and Biotechnology*, 104(2), 555-574.
- Martín, A., Benito, M. J., Aranda, E., Ruiz Moyano, S., Córdoba, J. J., & Córdoba, M. G. (2010). Characterization by Volatile Compounds of Microbial Deep Spoilage in Iberian Dry Cured Ham. *Journal of food science*, 75(6), M360-M365.
- Martín-Gómez, A., Segura-Borrego, M. P., Ríos-Reina, R., Cardador, M. J., Callejón, R. M., Morales, M. L., ... & Arce, L. (2022). Discrimination of defective dry-cured Iberian ham determining volatile compounds by non-destructive sampling and gas chromatography. *LWT*, 154, 112785.
- Melo, T. S., Blumer, T. N., Swaisgood, H. E. & Monroe, R. J. (1974). Catheptic enzyme activity in aged country-style hams as influenced by pre-curing treatment. *Journal of Food Science*, 39(3), 511-515.
- Merialdi, G., Ramini, M., Parolari, G., Barbuti, S., Frustoli, M.A., Taddei, R., Pongolini, S., Ardigò, P.
 & Cozzolino, P. (2016). Study on Potential Clostridium Botulinum Growth and Toxin Production in Parma Ham. J. Agric. Food Chem., 66(38), 9952–9959.
- Migaud, M. & Frentz, J. C. (1978). La Charcuterie crue et les produits saumurés. Orly, France: Soussana, S.A.
- Molina, I., Silla, H., Flores, J. & Monzó, J. L. (1989).
 Study of the microbial microbiota in dry-cured ham. Il Micrococcaceae. Fleischwirtschaft, 69(9), 1433-1434.
- Molina, I., Silla, H., Flores, J. & Monzó, J. L. (1990).
 Study of the microbial microbiota of dry-cured ham.

- 4. Yeasts. Fleischwirtschaft International, 2, 47-54.
- Montanha, F. P., Anater, A., Burchard, J. F., Luciano, F. B., Meca, G., Manyes, L. & Pimpão, C. T. (2018).
 Mycotoxins in dry-cured meats: A review. Food and Chemical Toxicology, 111, 494–502. https://doi.org/10.1016/j.fct.2017.12.008
- Mora, L., Sentandreu, M. A. & Toldrá, F. (2008). Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. *Meat Science*, 79(4), 709-715.
- Mora, L., Hernández-Cázares, A. S., Sentandreu, M. A. & Toldrá, F. (2010). Creatine and creatinine evolution during the processing of dry-cured ham. *Meat Science*, 84(3), 384–389. doi:10.1016/j.meatsci.2009. 09.006
- Morales, M. T., & Aparicio, R. (1999). Effect of extraction conditions on sensory quality of virgin olive oil. *Journal of the American Oil Chemists Society*, 76(3), 295–300.
- Morales, R., Arnau, J., Serra, X., Guerrero, L. & Gou, P. (2008). Texture changes in dry-cured ham pieces by mild thermal treatments at the end of the drying process. *Meat Science*, 80(2), 231–238.
- Morales, R., Guerrero, L., Aguiar, A. P. S., Guàrdia, M. D., & Gou, P. (2013). Factors affecting dry-cured ham consumer acceptability. Meat Science, 95(3), 652-657.
- Morales, R., Guerrero, L., Claret, A., Guàrdia, M.
 D. & Gou, P. (2008). Beliefs and attitudes of butchers and consumers towards dry-cured ham. *Meat Science*, 80(4), 1005-1012.
- Moro, S., Restelli, G. L., Arrighi, S., Moretti, V. M., Bontempo, V., Rizzi, R. M., Stella, A. & Pagnacco, G. (2011). Genetic and environmental effects on a meat spotting defect in seasoned dry-cured ham. *Ital-ian Journal of Animal Science*, 10(1), 33 - 37.
- Nanni Costa, L., Lo Fiego, D. P., Tassone, F. & Russo, V. (2005). Effect of resting time of pigs and prechilling time of thighs on the veining defect of parma dry-cured ham. *Veterinary Research Communications*, 29(2), 375-377.
- Narváez-Rivas, M., Vicario, I. M., Constante, E. G. & León-Camacho, M. (2008). Changes in the fatty acid and triacylglycerol profiles in the subcutaneous fat of Iberian ham during the dry-curing process. *Journal of agricultural and food chemistry*, 56(16), 7131-7137.
- Nuñez, F., Rodríguez, M. M., Bermúdez, E., Córdoba, J. J. & Asensio, M. A. (1996). Composition and toxigenic potential of the mould population on dry-cured Iberian ham. *International Journal of Food Microbiology*, 32, 185-197.

- Olmos-Llorente, J. V. (2006). Descripción anatómica de la coquera de la región coxofemoral. In Jamones Segovia S.A. (Ed.), Atlas Monte Nevado de anatomía del jamón serrano. Parla, España: Gráficas Berlín, S.L.
- Olmos-Llorente, J. V. (2005). Reflexiones sobre la implantación y evolución de la E.T.G. "Jamón Serrano". III Congreso Mundial del Jamón, pp. 270-280.
- Ömür-Özbek, P., Dietrich, A. M., Duncan, S. E. & Lee, Y. (2012). Role of lipid oxidation, chelating agents, and antioxidants in metallic flavor development in the oral cavity. *Journal of agricultural and food chemistry*, 60(9), 2274-2280.
- Ortiz Lemus, J. F. (2014). Control del ácaro en la producción de Jamón Ibérico. Innovaciencia Facultad Cienc. Exactas Fis. Naturales., 2(1): 33 44.
- Ortiz-Lemus, J. F., Campoy, S., Cañedo, L. M., Liras, P., & Martín, J. F. (2020). Purification and Chemical Characterization of a Potent Acaricide and a Closely Related Inactive Metabolite Produced by Eurotium rubrum C47. Antibiotics, 9(12), 881.
- Ortiz-Lemus, J.F., Campoy, S. & Martín, J.F. (2021).
 Biological control of mites by xerophile Eurotium species isolated from the surface of dry cured ham and dry beef cecina. J. Appl. Microbiol., 130(3): 665-676. doi:10.1111/jam.14839
- Ouali, A. (1990). Meat tenderization: possible causes and mechanisms. A review. *Journal of Muscle Foods*, 1(2), 129-165.
- Palin, M. F., Beaudry, D., Roberge, C. & Pomar, C. (2002). Use of subtractive hybridization to identify genetic factors involved in the development of swine muscle steatosis, 7th World Congress on Genetics Applied to Livestock Production. Montpellier, France.
- Palin, M. F., Pomar, C. & Gariepy, C. (2003). La esteatosis muscular del cerdo en crecimiento, Jornada técnica "La qualitat com a objetiu en el porcí". Monells, Spain.
- Palin, M. F., Pomar, C., Gariepy, C., & Faucitano, L. (2005). Incidents and origins of muscular "steatosis" (excess of fat infiltration) in growing pigs, *III Congreso Mundial del Jamón*. Teruel, Spain.
- Parolari, G. (1996). Review: Achievements, needs and perspectives in dry-cured ham technology: the example of Parma ham. Food Science and Technology International, 2(2), 69-78.
- Parolari, G., Rivaldi, P., Leonelli, C., Bellati, M. & Bovis, N. (1988). Colore e consistenza del prosciutto crudo in rapporto alla materia prima e alla tecnica di stagionatura. *Industria Conserve*, 63, 45-49.

- Parolari, G., Virgili, R. & Schivazappa, C. (1994).
 Relationship between cathepsin B activity and compositional parameters in dry-cured hams of normal and defective texture. *Meat Science*, 38(1), 117-122.
- Parolari, G., Aguzzoni, A. & Toscani, T. (2016). Effects of processing temperature on color properties of drycured hams made without nitrite. Foods, 5(2), 33.
- Parolari, G., Gabba, L. & Saccani, G. (2003). Extraction properties and absorption spectra of dry cured hams made with and without nitrate. *Meat science*, 64(4), 483-490.
- Pérez-Santaescolástica, C., Carballo, J., Fulladosa, E., Garcia-Perez, J. V., Benedito, J. & Lorenzo, J. M. (2018). Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Research International, 107, 559–566. doi:10.1016/i.foodres.2018.03.001
- Pionnier, E., Nicklaus, S., Chabanet, C., Mioche, L., Taylor, A. J., Le Quéré, J. L. & Salles, C. (2004).
 Flavor perception of a model cheese: relationships with oral and physico-chemical parameters. Food Quality and Preference, 15(7-8), 843-852.
- Piqueras-Fiszman, B., Laughlin, Z., Miodownik, M.
 & Spence, C. (2012). Tasting spoons: Assessing how the material of a spoon affects the taste of the food. Food Quality and Preference, 24(1), 24-29.
- Petersen, G. V., Carr, D. H., Davies, A. S. & Pickett,
 B. T. (1986). The effect of different methods of electrical stunning of lambs on blood pressure and muscular activity. *Meat Science*, 16(1), 1-15.
- Poma, J. P. (1987). Prevention du poissage des jambons secs en cours de fabrication. Viandes et Produits Carnés, 8(3), 109-111.
- Rastelli, E., Giraffa, G., Carminati, D., Parolari, G. & Barbuti, S. (2005). Identification and characterisation of halotolerant bacteria in spoiled dry-cured hams.
 Meat Science, 70(2), 241-246.
- Rico, E., Toldrà, F. & Flores, J. (1990). Activity of cathepsin D as affected by chemical and physical dry-curing parameters. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 191(1), 20-23.
- Rodríguez del Río, P., Tudela García, J.I., Narganes, N.J., Fernández Caldas, E., Rodríguez-García, V. & Subiza, J. (2012). Occupational asthma caused by the inhalation of *Tyrophagus putrescentiae* allergens in a dry-cured ham transporter allergic to shrimp. *J. Invest. Allergol. Clin. Immunol.*, 22(5):372-92.
- Rosenvold, K., Petersen, J. S., Læerke, H. N., Jensen,

- S. K., Therkildsen, M., Karlsson, A. H., Moller, H. S. & Andersen, H. J. (2001). Muscle glycogen stores and meat quality as affected by strategic finishing feeding of slaughter pigs. *Journal of Animal Science*, 79(2), 382-391.
- Ruiz, J., García, C., Diaz, M. C., Cava, R., Tejeda, J. F. & Ventanas, J. (1999). Dry-cured Iberian ham non-volatile components as affected by the length of the curing process. Food Res. Int., 32, 643-651.
- Ruiz, J., Ventanas, J., Cava, R., Timón, M. L. & García, C. (1998). Sensory characteristics of Iberian ham: influence of processing time and slice location. Food Research International, 31(1), 53-58.
- Ruiz-Ramírez, J., Arnau, J., Serra, X. & Gou, P. (2005). Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. *Meat Science*, 70(4), 579-587.
- Ruiz-Ramírez, J., Arnau, J., Serra, X. & Gou, P. (2006). Effect of pH24, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. *Meat Science*, 72(2), 185-194.
- Russo, V., Lo Fiego, D.P., Nanni Costa, L. & Tassone, F. (2003). Indagine sul difetto di venatura delle cosce di suino destinate alla produzione del Prosciutto di Parma. Suinicoltura, 44(6), 77-82.
- Sánchez-López, J. & Navarrete, I. (2005). Equipos disponibles para la eliminación de ácaros, eficacia y efectos sobre la calidad, *III Congreso Mundial del Ja*món (pp. 115-122). Teruel, Spain.
- Sánchez-Molinero, F. & Arnau, J. (2008). Effect of the inoculation of a starter culture and vacuum packaging during the resting stage on sensory traits of dry-cured ham. *Meat Science*, 80(4), 1074-1080.
- Sánchez-Molinero, F. & Arnau, J. (2010). Processing of dry-cured ham in a reduced-oxygen atmosphere: Effects on sensory traits. *Meat Science*, 85(3), 420-427.
- Sánchez-Molinero, F., Garcia-Regueiro, J. A. & Arnau, J. (2010). Processing of dry-cured ham in a reduced-oxygen atmosphere: Effects on physicochemical and microbiological parameters and mite growth. *Meat Science*, 84(3), 400-408.
- Sánchez-Molinero, F., & Arnau, J. (2014). Effects of the applications of oil drip onto surface and of the use of a temperature of 35° C for 4 days on some physicochemical, microbiological and sensory characteristics of dry-cured ham. *Meat science*, 98(2), 81-87.
- Sárraga, C., Gil, M., Arnau, J., Monfort, J. M. &

- **Cussó, R.** (1989). Effect of curing salt and phosphate on the activity of porcine muscle proteases. *Meat Science*, 25(4), 241-249.
- Sárraga, C., Gil, M. & García-Regueiro, J. A. (1993).
 Comparison of calpain and cathepsin (B, L and D) activities during dry-cured ham processing from heavy and light large white pigs. *Journal of the Science of Food and Agriculture*, 62(1), 71-75.
- Savoldelli, S., Jucker, C., Peri, E., Arif, M. A. & Guarino, S. (2020). Necrobia rufipes (De Geer) Infestation in Pet Food Packaging and Setup of a Monitoring Trap. Insects, 11(9), 623.
- Schmidt, U. (1996). Die Milbenbekämpfung in der Fleischwirtschaft. Mitteilungsblatt - Bundesanstalt für Fleischforschung Kulmbach, 133, 262-267.
- Schmidt, U. & Cremmling, K. (1975). Bekämpfung des Milbenbefalls bei Fleischerzeugnissen. Die Fleischwirtschaft, 55(6), 823-828, 831-832.
- Serra, X., Fulladosa, E., Gou, P. & Arnau, J. (2010).
 Models to predict the final salt content of dry-cured hams. 6th International conference on simulation and modelling in the food and bio-industry (Foodsim), 24/06/2010, Bragança, Portugal (pp. 13-16).
- Serra, X., Gou, P., Guerrero, L., Guàrdia, M. D., Picouet, P. A., Grèbol, N. & Arnau, J. (2006). Effect of high pressure on sensory properties of pasty hams, Workshop on Applications of Novel Technologies in Food and Biotechnology (pp. 125). Cork, Ireland.
- Serra, X., Grebol, N., Guardia, M. D., Guerrero, L., Gou, P., Masoliver, P., Gassiot, M., Sarraga, C., Monfort, J. M. & Arnau, J. (2007). High pressure applied to frozen ham at different process stages. 2. Effect on the sensory attributes and on the colour characteristics of dry-cured ham. *Meat Science*, 75(1), 21-28.
- Serra, X., Ruiz-Ramírez, J., Arnau, J. & Gou, P. (2005). Texture parameters of dry-cured ham m. biceps femoris samples dried at different levels as a function of water activity and water content. Meat Science, 69(2), 249-254.
- Sforza, S., Galaverna, G., Schivazappa, C., Marchelli, R., Dossena, A. & Virgili, R. (2006). Effect of Extended Aging of Parma Dry-Cured Ham on the Content of Oligopeptides and Free Amino Acids. *J. Agric. Food Chem.*, 54, 9422–9429.
- Silla, M. H., Innerarity, A. & Flores, J. (1985). Características de jamones con cristales de tirosina. Revista de Agroquímica y Tecnología de Alimentos, 25(1), 95-103.
- Skiba, G. (2005). Physiological aspects of compensatory growth in pigs. *Journal of Animal and Feed*

- Sciences, 14, 191.
- Skibsted, L. H. (2011). Nitric oxide and quality and safety of muscle based foods. Nitric oxide, 24(4), 176-183.
- Skinner, M., Lim, M., Tarrega, A., Ford, R., Linforth, R., Thomas, A. & Hort, J. (2017). Investigating the oronasal contributions to metallic perception. *International Journal of Food Science & Technology*, 52(6), 1299-1306.
- Spotti, E., Mutti, P. & Campanini, M. (1988). Indagine microbiologica sul "Difetto dell'acido fenico" del prosciutto durante la stagionatura. *Industria Conserve*, 63, 343-346.
- Stevens, D.A., Smith, R.F. & Lawless, H.T. (2006).
 Multidimensional scaling of ferrous sulfate and basic tastes. *Physiol. Behav.*, 87(2): 272–9.
- Suñer, D., Casadevall, M., Dominguez, M. & Vicens, J. (1987). Listado de especies. In IRTA (Ed.), Jamón Curado: Aspectos Técnicos (pp. 243-264). Girona, Spain: GRAFIS-SANT, S.A.
- Tafuro, F., Ridolo, E., Goldoni, M., Montagni, M., Mutti, A. & Corradi, M. (2015). Work-related allergies to storage mites in Parma (Italy) ham workers. *BMJ Open*. 2015; 5(5):e007502. doi: 10.1136/bmjopen2014-007502.
- Tanzi, E., Saccani, G., Barbuti, S., Grisenti, M. S., Lori, D. & Bolzoni, S. (2004). High-pressure treatment of raw ham. Sanitation and impact on quality. *Industria Conserve*, 79, 37-50.
- Tapia, M.S., Alzamora, S.M. & Chirife, J. (2007). Effects of water activity (a_w) on microbial stability: as a hurdle in food preservation. In: Barbosa-Cánovas, G.V., Fontana, A.J.F., Schmidt, S.J. & Labuza, T.P., editors. Water activity in foods. Oxford: *Blackwell Publishing Ltd.* p 239–55.
- Therkildsen, M., Vestergaard, M., Busk, H., Jensen, M.T., Riis, B., Karlsson, A., Kristensen, L., Ertbjerg, P. & Oksbjerg, N. (2004). Compensatory growth in slaughter pigs—in vitro muscle protein turnover at slaughter, circulating IGF-I, performance and carcass quality. *Livestock Production Science*, 88(1–2): 63-75. https://doi.org/10.1016/j.livprodsci.2003.10.009.
- **Thind, B.B.** (2005). A new versatile and robust mite trap for detection and monitoring of storage mites in the cereal and allied industries. *Experimental and Applied Acarology*, 35, 1-17.
- Tikk, M., Tikk, K., Tørngren, M. A., Meinert, L., Aaslyng, M. D., Karlsson, A. H., & Andersen, H. J. (2006). Development of inosine monophosphate and its degradation products during aging of pork of dif-

- ferent qualities in relation to basic taste and retronasal flavor perception of the meat. *Journal of Agricultural and Food Chemistry*, 54(20), 7769-7777.
- Toldrá, F. (2006). The role of muscle enzymes in drycured meat products with different drying conditions.
 Trends in Food Science & Technology, 17(4), 164– 168. doi:10.1016/j.tifs.2005.08.007
- Toldrá, F. & Etherington, D. J. (1988). Examination of cathepsins B, D, H and L activities in dry-cured hams. *Meat Science*, 23(1), 1-7.
- Uzzan, M., Nechrebeki, J., Zhou, P. & Labuza, T. (2009). Effect of water activity and temperature on the stability of creatine during storage. *Drug Devel*opment and Industrial Pharmacy, 35(8): 1003–1008.
- Van Wazer, J. R. (1971). Chemistry of the phosphates and condensed phosphates. In Symposium: Phosphates in Food Processing, *University of Guelph*, Ontario, Canada.
- Velarde, A., Gispert, M., Faucitano, L., Manteca, X. & Diestre, A. (2000). The effect of stunning method on the incidence of PSE meat and haemorrhages in pork carcasses. *Meat Science*, 55(3), 309-314.
- Ventanas, J., Arnau, J. & Grèbol, N. (2016). Estrategias para evitar pérdidas de calidad en jamón y paleta loncheados. Recomendaciones a los fabricantes.
 eurocarne, 246, 87-91.
- Ventanas, J., Córdoba, J. J., Antequera, T., Garcia,
 C., López-Bote, C. & Asensio, M. A. (1992). Hydrolysis and Maillard reactions during ripening of Iberian ham. *Journal of Food Science*, 57(4), 813-815.
- Ventanas, S., Ruiz, J., García, C. & Ventanas, J. (2007). Preference and juiciness of Iberian dry-cured loin as affected by intramuscular fat content, crossbreeding and rearing system. *Meat Science*, 77(3), 324-330.
- Vidal, V. A. S., Lorenzo, J. M., Munekata, P. E. S. & Pollonio, M. A. R. (2020). Challenges to reduce or replace NaCl by chloride salts in meat products made from whole pieces a review. *Critical Reviews in Food Science and Nutrition*, 1–13. doi:10.1080/104083 98.2020.1774495
- Virgili, R., Parolari, G., Schivazappa, C., Soresi Bordini, C. & Borri, M. (1995). Sensory and texture quality of dry-cured ham as affected by endogenous cathepsin B activity and muscle composition. *Journal of Food Science*, 60(6), 1183-1186.
- Virgili, R., Saccani, G., Gabba, L., Tanzi, E. & Soresi Bordini, C. (2007). Changes of free amino acids and biogenic amines during extended ageing of Italian

- dry-cured ham. LWT Food Science and Technology, 40(5), 871-878.
- Virgili, R. & Schivazappa, C. (2002). Muscle traits for long matured dried meats. *Meat Science*, 62(3), 331-343.
- Virgili, R., Toscani, T., Schivazappa, C., Mazzotta, L., Manfredini, R. & Portaluppi, F. (2002). Effect of seasonal changes on muscle cathepsin B activity and pH24h of Italian heavy pig. In Proceedings 48th International Congress of Meat Science and Technology, 25–30 August 2002, Rome, Italy.
- Wakamatsu, J., Nishimura, T., & Hattori, A. (2004).
 A Zn-porphyrin complex contributes to bright red color in Parma ham. *Meat Science*, 67(1), 95-100.
- Wakamatsu, J. I., Okui, J., Hayashi, N., Nishimura, T., & Hattori, A. (2007). Zn protoporphyrin IX is formed not from heme but from protoporphyrin IX. *Meat science*, 77(4), 580-586.
- Wakamatsu, J., Odagiri, H., Nishimura, T. & Hattori,
 A. (2006). Observation of the distribution of Zn protoporphyrin IX (ZPP) in Parma ham by using purple LED and image analysis. *Meat science*, 74(3), 594-599.
- Wakamatsu, J. I., Hayashi, N., Nishimura, T. & Hattori, A. (2010). Nitric oxide inhibits the formation of zinc protoporphyrin IX and protoporphyrin IX. *Meat science*, 84(1), 125-128.
- Wang, Y., Li, F., Chen, J., Sun, Z., Wang, F., Wang, C., & Fu, L. (2021). High-throughput sequencing-based characterization of the predominant microbial community associated with characteristic flavor formation in Jinhua Ham. *Food Microbiology*, 94, 103643.
- Yildirim, S., Röcker, B., Rüegg, N., & Lohwasser,
 W. (2015). Development of palladium based oxygen scavenger: optimization of substrate and palladium layer thickness. *Packaging Technology and Science*, 28(8), 710-718.
- Zhao, Y., Abbar, S., Amoah, B., Phillips, T. W. & Schilling, M. W. (2016). Controlling pests in dry-cured ham: A review. *Meat Science*, 111, 183–191. doi:10.1016/j.meatsci.2015.09.009
- Zhao, H., Yang, J. R., Xu, H. & Zhang, J. (2010).
 Pseudogenization of the umami taste receptor gene
 Tas1r1 in the giant panda coincided with its dietary switch to bamboo. *Molecular biology and evolution*, 27(12), 2669-2673.
- Zhao, C. J., Schieber, A. & Gänzle, M. G. (2016).
 Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations: A review. Food Research International, 89, 39-47.

MAQUINARIA PARA EL SECTOR ALIMENTARIO

DISTRIBUIDOR OFICIAL PARA ESPAÑA DE:

FLEISCHEREIMASCHINEN

Cosedoras, Atadoras, Enmalladoras y Afiladoras.

Know-how in food processing!

Descortezadoras automáticas para jamón, Desveladoras, Cortadoras, Peladoras y Máquinas de hielo.

