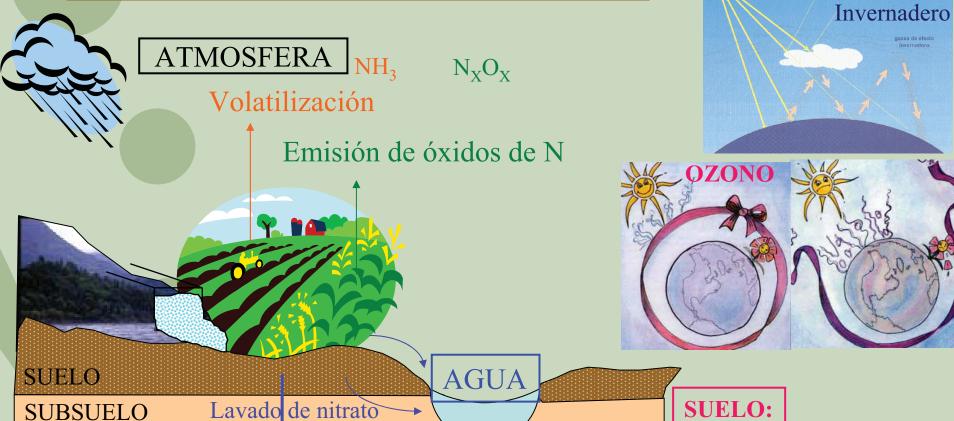
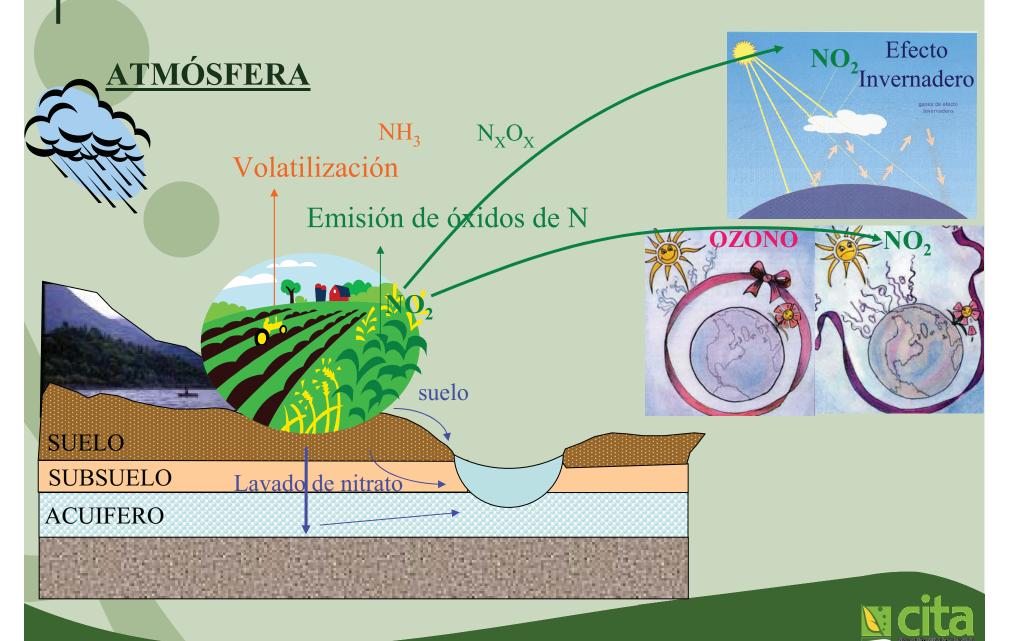
JORNADA TÉCNICA LA SITUACIÓN ACTUAL DE LA FERTILIZACIÓN CON PURÍN PORCINO

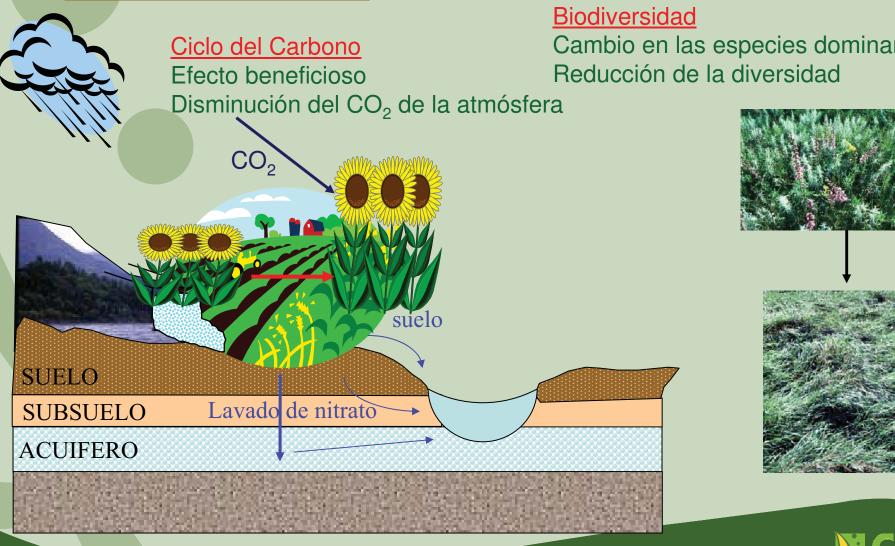
APORTACIONES DE NITRÓGENO EN REGADÍO Y PROBLEMÁTICA DEL LAVADO DE NITRATO


Dolores Quílez
Unidad de Suelos y Riegos (asociada EEAD-CSIC)
Grupo de Investigación Riego, Agronomía y Medio Ambiente
Centro de Investigación y Tecnología Agroalimentaria
28 de Abril de 2011

- El nitrógeno es un componente esencial de las proteínas, el material genético, la clorofila y otras moléculas orgánicas que componen los seres vivos.
- > Todos los seres vivos necesitamos nitrógeno para vivir.
- Dentro de los elementos químicos que componen los tejidos de los seres vivos el nitrógeno es el cuarto en importancia después del: oxígeno, carbono e hidrógeno.
- En condiciones naturales el nitrógeno está disponible para los organismos en cantidades pequeñas y es uno de los **factores limitantes mas importantes** que controlan la dinámica, biodiversidad y el funcionamiento de muchos ecosistemas.



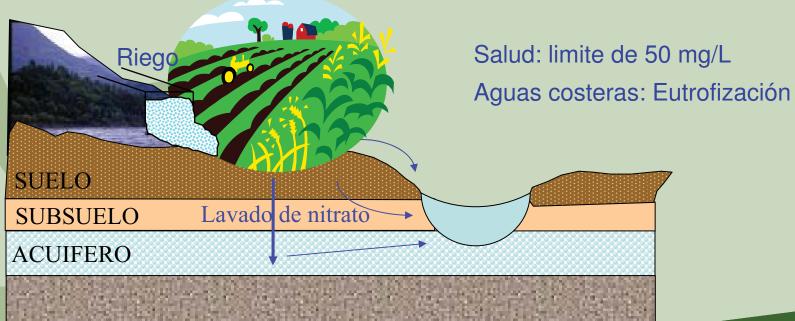
ACUIFERO


Ciclo del Carbono Biodiversidad

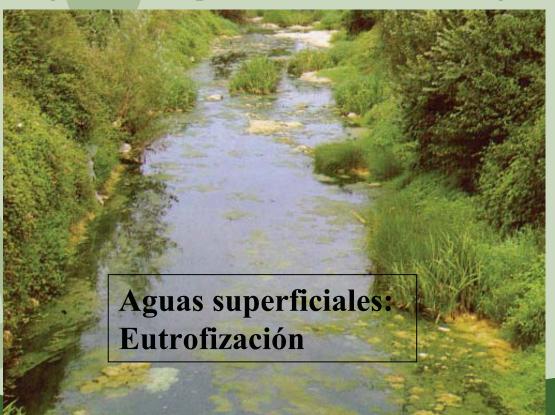
Efecto

Ecosistemas terrestres

Cambio en las especies dominantes



Ecosistemas acuáticos



Contaminación de las aguas por nitrato

¿Por qué?

→ Sobre la salud humana

Legislación española: Límite de 50 mg/L de nitrato para agua potable

Directiva Europea de Nitrato

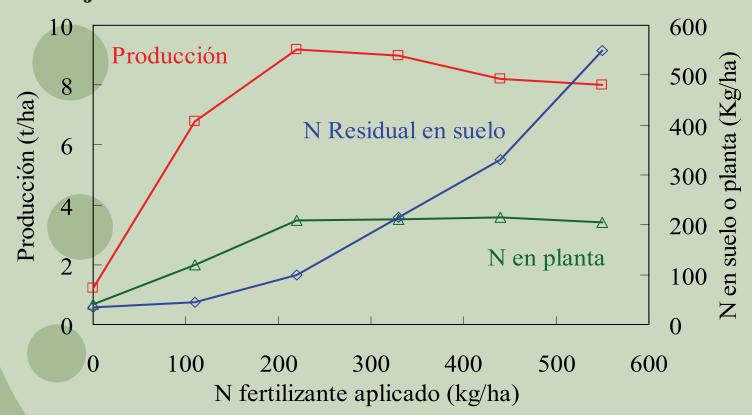
- Directiva 91/676/CEE
- Real Decreto 261/1996

Aragón

- Decreto 77/1997
- III Plan de Actuación (2009)

Factores que afectan al lavado de nitrato

1. Uso del Suelo


Concentración de nitrato en el agua subterránea bajo diferentes usos del suelo (Juergens-Gschwind, 1989)

Uso del Suelo	#Observaciones	NO ₃ (mg/L)
Bosque	110	0-15
Areas Naturales	370	2-4
Pastizales	370	2-3
Varios cultivos y pastos con ganado	30	4-20
Cultivos intensivos	200	15-130
Suelo agrícola parcialmente urbanizado	50	20-150

Factores que afectan al lavado de nitrato

1. Manejo del Abonado - Dosis

Factores que afectan al lavado de nitrato

- 2. Manejo del riego
- 3. Manejo del cultivo
 - Profundidad de raíces
 - Mantener cobertura vegetal en invierno en cultivos de primavera
- 4. Tipo de suelo
 - Textura del suelo: Riesgo de lavado mayor en suelos arenosos muy permeables y de capacidad de retención de agua limitada.
 - Profundidad del suelo: Mayor riesgo en suelos poco profundos
 - Contenido de materia orgánica.- Mayor riesgo en suelos con contenido alto de materia orgánica

1. Fertilización mineral del maíz

Lisímetros: Superficie = 5,2 m²

Profundidad = 1.5 m

Suelo: Terrazas Gallego

Textura: Franco arenosa

Materia Orgánica: 1,9%

1. Fertilización mineral del maíz

Prácticas tradicionales frente a prácticas mejoradas

• Dosis de nitrógeno:

- Tradicional (**N2**): 400 kg *N*/ha
- Mejorada (N1) Producción 10 t/ha: 275 kg N/ha
 Fraccionamiento: 1/3 sementera 15-15-15
 2/3 cobertera Nitrato Amónico: 33.5%

• Dosis de riego:

- Tradicional (I2): FL=0,4 Eficiencia riego= 0,6
- Mejorada (I1): FL=0,1 Eficiencia riego= 0,9

Saad, J.K., Quílez, D. 1998. Efecto de la dosis de abonado y el riego sobre el lavado de nitrato en cultivo de maíz. XVI Congreso Nacional de Riegos, Mallorca.

1. Fertilización mineral del maíz

Media años 1996 y 1997

	Grano (14%)		Nitrat	o lavado
	Kg/ha	% maximo	Kg N/ha	% máximo
N1I1	11090	100	80	42
N1I2	11317	102	127	67
N2I1	10782	98	132	69
N2I2	11041	100	190	100
N1	11203	103	103	 64 N Mejorada
<i>N2</i>	10911	100	161	100 N Tradicion
II	10936	98	106	67
12	11179	100	158	100

1. Fertilización mineral del maíz

Media años 1996 y 1997

	Grano (14%)		Nitrat	o lavado
	Kg/ha	% maximo	Kg N/ha	% máximo
N1I1	11090	100	80	42
N1I2	11317	102	127	67
N2I1	10782	98	132	69
N2I2	11041	100	190	100
N1	11203	103	103	64
<i>N2</i>	10911	100	161	100
<i>I1</i>	10936	98	106	67 Riego Mejor
12	11179	100	158	100 Tradicional

1. Fertilización mineral del maíz

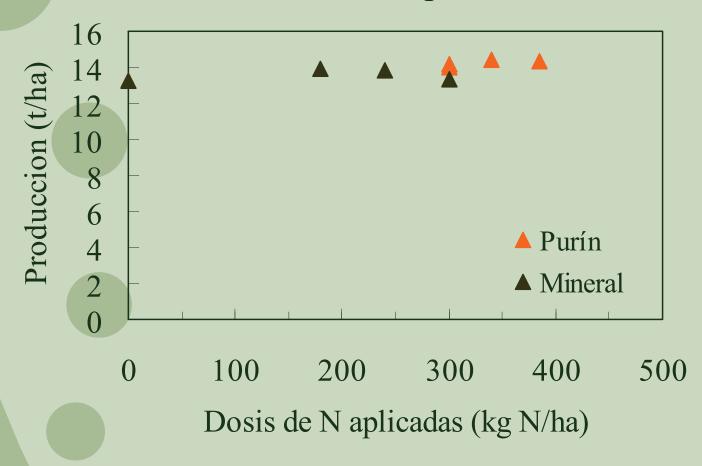
Media años 1996 y 1997

	Grano (14%)		Nitrat	o lavado
	Kg/ha	% maximo	Kg N/ha	% máximo
NIII	11090	100	80	42 N y Riego
N1I2	11317	102	127	67 mejorado
<i>N2I1</i>	10782	98	132	69
N2I2	11041	100	190	100 Tradiciona
N1	11203	103	103	64
<i>N2</i>	10911	100	161	100
II _	10936	98	106	67
<i>12</i>	11179	100	158	100

[✓] La mejora del riego y la fertilización nitrogenada disminuye la masa de nitrato lavada.

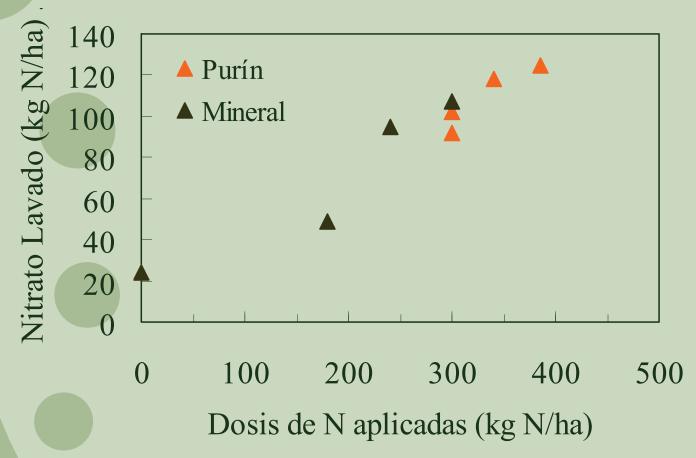
2. Fertilización del maíz con purín

T1: $30 \text{ m}^3 + 200 \text{ kg}\text{N/ha} = 300 \text{ kg} \text{ N/ha}$


T2: $60 \text{ m}^3 + 130 \text{ kg}N/\text{ha} = 300 \text{ kg N/ha}$

T3: $90 \text{ m}^3 + 130 \text{ kg N/ha} = 385 \text{ kg N/ha}$

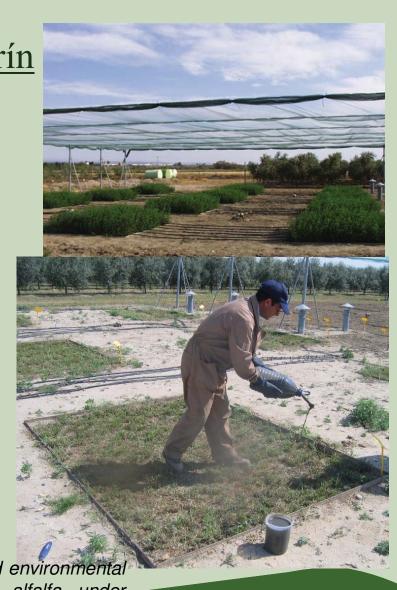
T4: $120 \text{ m}^3 = 340 \text{ kg N/ha}$


2. Fertilización del maíz con purín

Yagüe M.R, Quílez D. 2010 Response of maize yield, nitrate leaching, and soil nitrogen to pig slurry combined with mineral nitrogen. Journal Environmental Quality, 39:686-696.

2. Fertilización del maíz con purín

✓ En la fertilización con purín, si el manejo es adecuado, el lavado de nitrato es potencialmente similar al de la fertilización mineral.


3. Fertilización de alfalfa con purín

Control: P-K
Dosis Baja: 170 kg N/ha
Dosis Alta: 350 kg N/ha

- Dos aplicaciones después del 1^{er} corte (final Abril) 3^{er} corte (final junio)

- Drenaje: 15% del volumen de riego aplicado

Salmerón M., Cavero J. Delgado I, Isla R., 2010. Yield and environmental effects of summer pig slurry applications to irrigated alfalfa under Mediterranean conditions. Agronomy Journal, 102(2): 559-567.

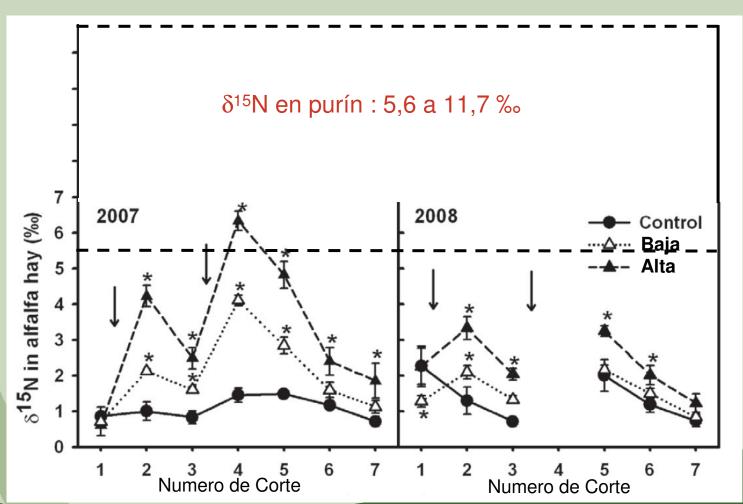
3. Fertilización de la alfalfa con purín

Rendimiento

	Purín m³/ha	N kg/ha	P ₂ O ₅ kg/ha	K ₂ O kg/ha	Rendimiento kg/ha
	Año 2007				
Control			200	150	20.300
Dosis Baja	48	(177)	63	68	21.200
Dosis Alta	96	354	126	137	19.800
	Año 2008				
Control			200	150	16.500
Dosis Baja	22	(201)	40	90	17.600
Dosis Alta	44	403	81	181	16.600

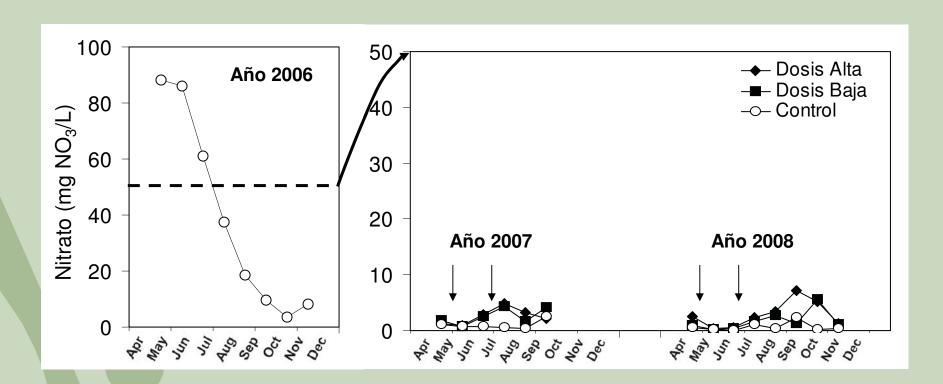
20.500 kg/ha 663 kg N/ha

16.900 kg/ha 551 kg N/ha

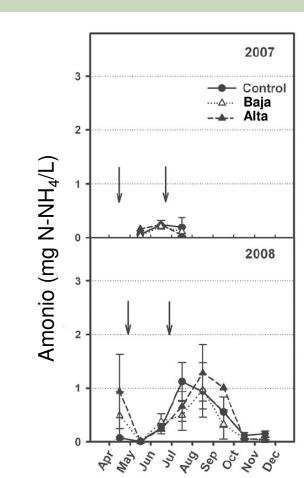

Control: P-K

Dosis Baja: 170 kg N/ha **Dosis Alta**: 350 kg N/ha

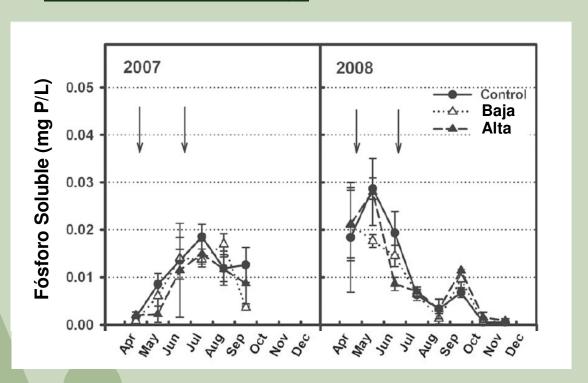
3. Fertilización de la alfalfa con purín


Discriminación entre N del purín y N atmosférico/suelo en la planta

3. Fertilización de la alfalfa con purín


Concentración de nitrato en el drenaje

1. Fertilización de alfalfa con purín

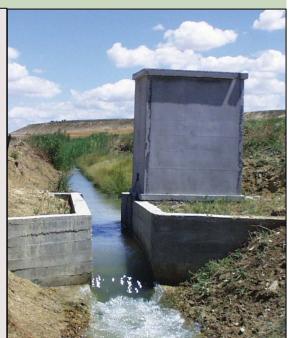

Concentración de Amonio en el drenaje

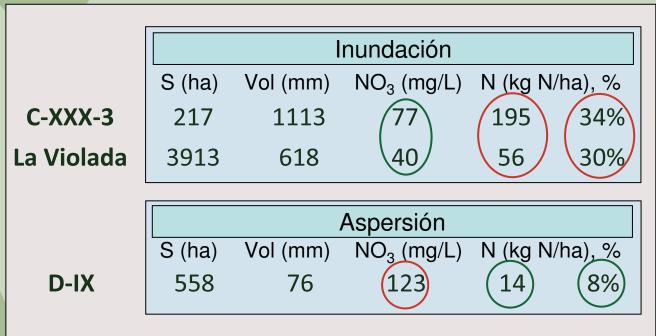
3. Fertilización de la alfalfa con purín

Fósforo en el drenaje

✓ La alfalfa puede fertilizarse con purín alcanzando su rendimiento potencial y sin incrementar la cantidad de nitrato lavada.

4. Nitrato exportado de zonas regables

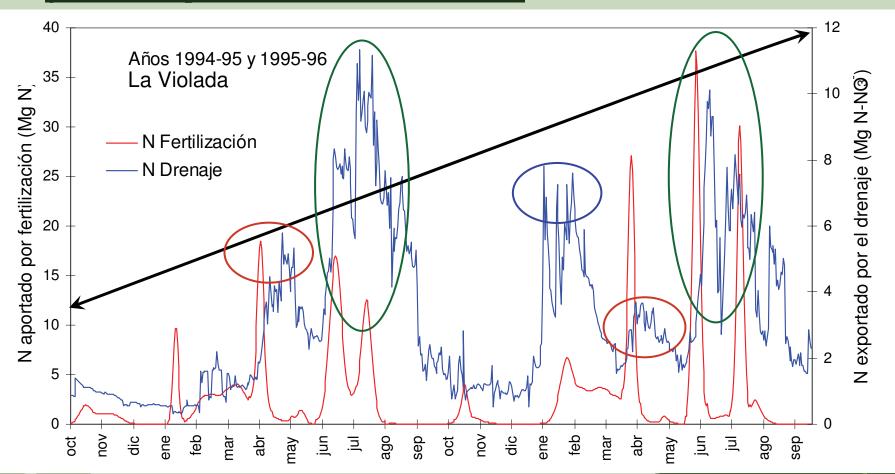

C-XXX-3 La Violada


Aspersión					
S (ha)	Vol (mm)	NO ₃ (mg/L)	N (kg N/ha), %		
558	76	(123)	(14) (8%)		

D-IX

Causapé, Quílez, Aragués. 2004. Agricultural Water Management 70:211-228. Isidoro, Quílez, Aragüés 2006. Journal of Environmental Quality 35:776-785 Cavero, Beltrán, Aragüés. 2003. Journal of Environmental Quality 32: 916-926

4. Nitrato exportado de zonas regables



✓ En los regadíos donde se realiza una buena gestión del agua, la masa de nitrato exportada es menor que en regadíos por inundación con limitaciones en esta gestión. Sin embargo aunque la masa de nitrato es menor la concentración de nitrato en las aguas de drenaje es sensiblemente mayor.

4. Nitrato exportado de zonas regables

¿Cuando se produce el lavado del nitrato?

Isidoro, Quílez, Aragüés. 2006. Journal of Environmental Quality 35:776-785

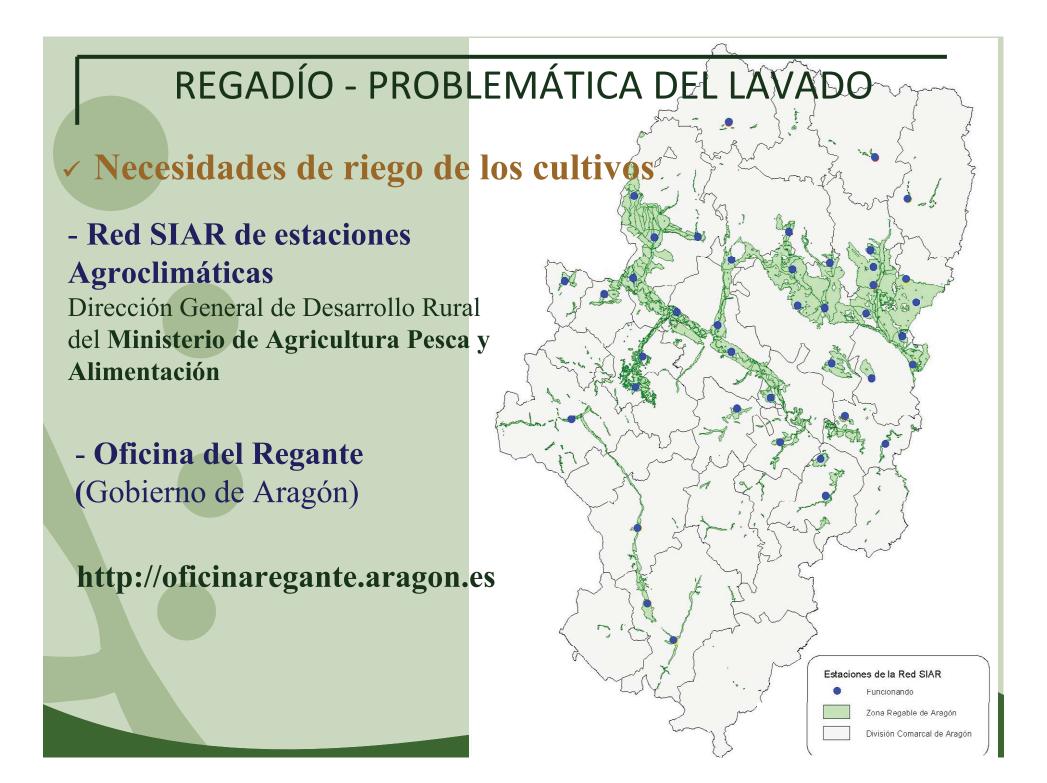
✓ CONCLUSIONES

- El purín si se maneja bien no tiene mayor riesgo de lavado de nitrato que los fertilizantes minerales y recicla los nutrientes

Dosis de purín adecuadas a las necesidades del cultivo.

- Conocimiento del purín que se aplica Contenido en nutrientes
- Distribución uniforme y aplicación eficiente

Buen manejo del riego para evitar el lavado de nitrato


- Ajustar el volumen de riego a las necesidades de los cultivos
- Controlar los riegos después de las aplicaciones de los fertilizantes

Cambio a sistemas de presión: Mejora la Calidad de las aguas

- Disminuye la masa de N que sale de las zonas regables
- Puede aumentar la concentración de nitrato en el drenaje

